Effect of Hot Rolling and Equal-Channel Angular Pressing on Generation of Globular Microstructure in Semi-Solid Mg-3%Zn Alloy

Article Preview

Abstract:

A combination of hot rolling and equal channel angular pressing (ECAP) was explored to generate globular microstructures in the Mg-3%Zn alloy after re-heating to the semisolid state. It was found that the single-step deformation of as-cast alloy via hot rolling at 350°C with a thickness reduction of 50% refined the alloy microstructure by creating deformation bands of the Mg (α) phase with a size of the order of tenths of micrometers. After re-heating to 630 °C, the microstructure transformed into spheroidal morphologies with an average globule size of 82 μm. An additional deformation of the hot-rolled alloy by the ECAP method at 250 °C further refined the alloy microstructure to sub-micrometer grains of lath and equiaxed shapes. After re-heating of this microstructure to 630 °C the average globule size reached 62 μm, which is roughly 25% smaller than that achieved for the hot-rolled precursor. The role of strain-induced melt activation (SIMA) techniques in generation of globular morphologies in Mg-based alloys after partial re-melting is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 217-218)

Pages:

381-388

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Fan , Semisolid metal processing, International Materials Reviews, 47/2 (2002) 49-85.

Google Scholar

[2] F. Czerwinski, Magnesium Injection Molding, Springer, New York (2008).

Google Scholar

[3] G. Hirt, R. Kopp, Thixoforming: Semi-solid metal processing, Wiley-VCH Verlag GmbH & Co. KGaA, Aachen (2009).

Google Scholar

[4] F. Czerwiński, Theory and Technology of Semisolid Metal Molding, Solid State Phenomena, 141 (2008) 9-16.

Google Scholar

[5] J. A. Valle, M. T. Pérez-Prado, J. R. Bartolomé , Grain refinement in a Mg AZ91 alloy via large strain hot rolling. Mater Trans 44 (2003) 2625–30.

DOI: 10.2320/matertrans.44.2625

Google Scholar

[6] Z. Ji, M Hu, S. Sugiyama, J. Yanagimoto, Formation process of AZ31B semi-solid microstructures through strain-induced melt activation method, Materials Characterization, 59/7 (2008) 905–911.

DOI: 10.1016/j.matchar.2007.07.015

Google Scholar

[7] J. Jiang, Y. Wang, Z. Du, S. Luo, Microstructure and properties of AZ80 alloy semisolid billets fabricated by new strain induced melt activated method, Trans. Nonferrous Met. Soc. China 22 (2012) 422−427.

DOI: 10.1016/s1003-6326(12)61741-5

Google Scholar

[8] T.J. Chen, G.X. Lu, Y. Ma, Y.D. Li, Y. Hao, Microstructural evolution during partial remelting of equal channel angular pressed ZW21 magnesium alloy, Journal of Alloys and Compounds 486 (2009) 124–135.

DOI: 10.1016/j.jallcom.2009.06.155

Google Scholar

[9] R. B. Figueiredo, T.G. Langdon; Grain refinement and mechanical behaviour of a magnesium alloy processed by ECAP, J Mater Sci. 45 (2010) 4827.

DOI: 10.1007/s10853-010-4589-y

Google Scholar

[10] J. Jiang, S. Luo, Mechanical behavior of processed AZ91D by equal channel angular extrusion during semi-solid isothermal compression, Solid State Phenomena, 116-117 (2006) 530-533.

DOI: 10.4028/www.scientific.net/ssp.116-117.530

Google Scholar

[11] K. P. Young, C. P. Kyonka and J. A. Courtois: US Patent 4, 415, 374 (1983).

Google Scholar

[12] J. Jiang, Y. Wang, S. Luo, Application of equal channel angular extrusion to semi-solid processing of magnesium alloy, Materials Characterization 58 (2007) 190–196.

DOI: 10.1016/j.matchar.2006.04.017

Google Scholar

[13] J. Jufua, W. Ying, Q. Jianjun, D. Zhiminga, S. Yi, L. Shoujing, Microstructure evolution of AM60 magnesium alloy semisolid slurry prepared by new SIMA, Journal of Alloys and Compounds 497 (2010) 62–67.

DOI: 10.1016/j.jallcom.2010.02.099

Google Scholar

[14] Z.H. Huang, R.S. Chen, E.H. Han, Preparation of Semi-solid Billet of ZW61 Alloy by Equal Channel Angular Extrusion, Materials Science Forum Vols. 610-613 (2009) pp.806-809.

DOI: 10.4028/www.scientific.net/msf.610-613.806

Google Scholar

[15] K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon; Achieving Enhanced Ductility in a Dilute Magnesium Alloy through Severe Plastic Deformation, Metal. Mater. Trans. 35A, (2004) 1735.

DOI: 10.1007/s11661-004-0082-z

Google Scholar

[16] Ł. Rogal, J. Dutkiewicz, A. Góral, B. Olszowska-Sobieraj, J. Dańko, Characterization of the after thixoforming microstructure of a 7075 aluminum alloy gear, International Journal of Material Forming 3 (1), 771-774.

DOI: 10.1007/s12289-010-0884-z

Google Scholar

[17] Ł Rogal., J. Dutkiewicz, Heat Treatment of Thixo-Formed Hypereutectic X210CrW12 Tool Steel, Metall. Mater. Trans. A 43A (2012) 5009-5018.

DOI: 10.1007/s11661-012-1347-6

Google Scholar

[18] Hugh Baker, ASM International Alloy Phase Diagram 1992, Vol. 3, 1113, United States of America.

Google Scholar

[19] M. Camacho, H.V. Atkinson, P. Kapranos, B. Argent, Thermodynamic predictions of wrought alloy compositions amenable to semi-solid processing, Acta Materialia, 51 (2003) 2319-2330.

DOI: 10.1016/s1359-6454(03)00040-5

Google Scholar

[20] M. Janecek, J. Cizek, J. Gubicza, J. Vratna; Microstructure and dislocation density evolution in MgAlZn alloy processed by severe plastic deformation J Mater Sci. 47 (2012) 7860.

DOI: 10.1007/s10853-012-6538-4

Google Scholar

[21] X. Gao, J.F. Nie. Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy Scr. Mater. 57 (2007) 655.

DOI: 10.1016/j.scriptamat.2007.06.005

Google Scholar