[1]
H. Friedrich, S. Schumann, Research for a new age of magnesium in the automotive industry, J. Mater. Process. Tech. 117 (2001) 276-281.
Google Scholar
[2]
I.J. Polmear, Magnesium alloys and applications, Mater. Sci. and Tech. 10 (1994) 1-16.
Google Scholar
[3]
A. Balasundaram, A.M. Gokhale, Digital image analysis technique for characterization of shrinkage and gas porosity in cast magnesium alloys, in: J. Hryn (Eds. ), Magnesium technology, TMS Annual Meeting, 2001, pp.155-159.
DOI: 10.1002/9781118805497.ch28
Google Scholar
[4]
Z. Fan, S. Ji, G. Liu. Development of the rheo-diecasting process for Mg-alloys, Mater. Sci. Form. 488-489 (2005) 405-412.
DOI: 10.4028/www.scientific.net/msf.488-489.405
Google Scholar
[5]
F. Zhang, N.N. Song, J. Zhang, Y.L. Kang and Q. Zhu, Numerical simulation on the filling process of rheological die casting and forming defects analysis, Solid State Phenomena. 192-193 (2013) 293-298.
DOI: 10.4028/www.scientific.net/ssp.192-193.293
Google Scholar
[6]
L.Q. Yang, Y.L. Kang, F. Zhang, R.H. Ding and J. Li, Rheo-diecasting of AZ91D magnesium alloy by taper barrel rheomoulding process, Trans. Nonferrous Met. Soc. China. 20 (2010) 966-972.
DOI: 10.1016/s1003-6326(09)60243-0
Google Scholar
[7]
Y. Wang, G. Liu, Z. Fan, Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment, Acta Materialia. 54 (2006) 689-699.
DOI: 10.1016/j.actamat.2005.09.033
Google Scholar
[8]
S. Ji, Z. Fan, M.J. Bevis, Semi-solid processing of engineering alloys by a twin-screw rheomoulding process, Mater. Sci. Eng. A. 299 (2001) 210-217.
DOI: 10.1016/s0921-5093(00)01373-3
Google Scholar
[9]
P.K. Seo, S.M. Lee, C.G. Kang, A new process proposal for continuous fabrication of rheological material by rotational barrel with stirring screw and its microstructural evaluation, J. Mater. Process. Tech. 209 (2009) 171-180.
DOI: 10.1016/j.jmatprotec.2008.01.037
Google Scholar
[10]
F. Zhang, Y.L. Kang, L.Q. Yang, R.H. Ding, Taper barrel rheomouldiing process for semisolid slurry preparation and microstructure evolution of A356 aluminum alloy, Trans. Nonferrous Met. Soc. China, 20 (2010) 1677-1684.
DOI: 10.1016/s1003-6326(09)60357-5
Google Scholar
[11]
B. Zhou, Y.L. Kang, J. Zhang, J.Z. Gao, F. Zhang, Forced convection rheomoulding process for semisolid slurry preparation and microstructure evolution of 7075 aluminum alloy, Solid State Phenomena. 192-193 (2013) 422-427.
DOI: 10.4028/www.scientific.net/ssp.192-193.422
Google Scholar
[12]
C.P. Chen, C. -Y.A. Tsao. Semisolid deformation of non-dendritic structures-I. Phenomenological Behavior, Acta mater. 45 (1997) 1955-(1968).
DOI: 10.1016/s1359-6454(96)00312-6
Google Scholar
[13]
B. Zhou, Y.L. Kang, G.M. Zhu, J.Z. Gao, M.F. Qi, Forced convection rheoforming process for semisolid slurry preparation and numerical simulation of 7075 alloy, Trans. Nonferrous Met. Soc. China. Accepted for publication (2013).
DOI: 10.1016/s1003-6326(14)63169-1
Google Scholar
[14]
U.A. Curle, J.D. Wilkins, G. Govender. R-HPDC of Magnesium alloys, Solid State Phenomena. 192-193 (2013) 225-230.
DOI: 10.4028/www.scientific.net/ssp.192-193.225
Google Scholar
[15]
Z. Fan, Development of the rheo-diecasting process for magnesium alloys, Mater. Sci. Eng. A. 413-414 (2005) 72–78.
DOI: 10.1016/j.msea.2005.09.038
Google Scholar
[16]
L.Q. Yang, Y.L. Kang, F. Zhang, J. Xu. Microstructure and mechanical properties of rheo-diecasting AZ91D Mg alloy, Trans. Nonferrous Met. Soc. China. 20 (2010) s862-s867.
DOI: 10.1016/s1003-6326(10)60596-1
Google Scholar