Kinetics of Fatigue Crack Propagation at the Tooth Root of a Cylindrical Gear Wheel

Article Preview

Abstract:

The present paper proposes an analytical method for determining the course (path) of crack propagation. A fatigue crack arises at the tooth root of a cylindrical geared wheel due to loading connected with gear work conditions. The cracking model was built using the adequate NASGRO2/3 formula; moreover, for comparison purposes, Forman and Paris-Erdogan’s laws were utilized. The length of an increase (propagation) in the crack was directly calculated by means of the boundary element method.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Pages:

333-338

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F. Bogdanoff, F. Kozin. Probabilistic Models of Cumulative Damage. John Wiley and Sons, N.Y., (1985).

Google Scholar

[2] J. Drewniak. Probabilistic B-models of cumulative fatigue damage, Journal of Theoretical and Applied Mechanics 34 (1996) 355–370.

Google Scholar

[3] K. Łukaszewicz, W. Osipiuk. The fatigue life prediction of notched elements, Acta Mechanica et Automatica 5(1) (2011) 53–58.

Google Scholar

[4] J. Rysiński. Evaluation of Fatigue Life and Strength Due to Breakage of Tooth of the Cylindrical Toothed Wheel, University of Bielsko-Biala, (2003).

Google Scholar

[5] D. M. Tracey. Finite elements for determination of crack tip elastic stress intensity factors, Eng. Fract. Mech. 3 (1971) 255–265.

DOI: 10.1016/0013-7944(71)90036-1

Google Scholar

[6] D. Kujawski. Trwałości zmęczeniowa metali, Wydawnictwa Politechniki Warszawskiej, (1991).

Google Scholar

[7] A. Neimitz. Mechanika pękania, PWN, Warszawa, 1998 (in Polish).

Google Scholar

[8] K. Gołoś. Trwałość zmęczeniowa stali w ujęciu energetycznym, Wydawnictwa Politechniki Warszawskiej, 1989 (in Polish).

Google Scholar

[9] P. Paris, F. Erdogan. A critical analysis of crack propagation laws, Trans. ASME 85 (1963) 528–534.

DOI: 10.1115/1.3656902

Google Scholar

[10] J.R. Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. ASME, 35 (1968) 379–386.

DOI: 10.1115/1.3601206

Google Scholar

[11] P. Paris, F. Erdogan. A critical analysis of crack propagation laws, Trans. ASME 85 (1963) 528–534.

DOI: 10.1115/1.3656902

Google Scholar

[12] J. Drewniak, J. Rysiński. Evaluation of fatigue life of cylindrical geared wheels, Solid State Phenomena 199 (2013) 93–98.

DOI: 10.4028/www.scientific.net/ssp.199.93

Google Scholar

[13] W. Gnilke. Lebensdauerberechnung der Maschinenelemente, VEB Verlag Technik, Berlin, (1980).

Google Scholar

[14] W. Gnilke, J. Kallenberg. Lebensdauerprognose auf bruchmechanischer Graunglage. Zahnradgetriebe III, Heft 5/85, TU Dresden, (1985).

Google Scholar

[15] D. Munz. Bruchmechanikkonzepte für Zeitfestigkeitsberechnungen, Dauerfestigkeit und Zeitfestigkeit – Zeitgemäße Berechnungskonzepte, VDI Verlag, Düsseldorf, (1988).

Google Scholar