Synthesis and Thermal Characterization of Dysprosium Zirconate

Article Preview

Abstract:

Results of investigations related to synthesis and thermal properties analysis of the Dy2Zr2O7 phase was presented in this article. This material was obtained during high temperature synthesis in an actual pressure of 15 MPa, in vacuum of 3×10-6 MPa, and at 1350°C with 2 hours of exposure. Feedstock materials were submicrocrystalline powders of dysprosia Dy2O3 and zirconia ZrO2. Both powders were mechanically blended in alcohol before the sintering process. The final product was analysed from the phase’s composition point of view. It was revealed that main constituent elements were dysprosium zirconate with an overall formula of Dy2Zr2O7 and others were Dy zirconates with a non-stoichiometric character. The presence of zirconia was found with tetragonal types of unite cell. This fact evidences that partial dissolution of Dy2O3 in ZrO2 took place. The obtained material was characterized by calorimetric investigations in the thermal range from 25 to 1450°C.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 223)

Pages:

54-61

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang A.Y., Lu M.K., Zhou G.J., Wang S.M., Zhou Y.Y., J Phys Chem Solids 67 (2006) 2430.

Google Scholar

[2] Li J.Y., Dai H., Li Q., Zhong X.H., Ma X.F., Meng J., Cao X.Q., Mater Sci Eng B 133 (2006) 209.

Google Scholar

[3] Subramanian M. A., Aravamudan G., Subba Rao G. V., Prog Solid State Chem. 15 (1983) 55.

Google Scholar

[4] Ushakov S. V., Navrotsky A., J Am Ceram Soc 90 (2007) 1171.

Google Scholar

[5] Labrincha J.A., Frade J.R., Marques F.M.B., Solid State Ionics 99 (1997) 33.

Google Scholar

[6] Takahisa O., Katsuhiko I., Ryoji T., Shinya O.Y.M., Solid State Ionics167 (2004) 389.

Google Scholar

[7] Sickafus K.E., Minervini L., Grimes R.W., Valdez J.A., Ishimaru M., Li F., McClellan K.J., Hartmann T., Science 289 (2000) 748.

DOI: 10.1126/science.289.5480.748

Google Scholar

[8] Moskal G., Swadźba L., Hetmańczyk M., Witala B., Mendala J., Sosnowy P., Journal of the European Ceramic Society 32 (2012) (2025).

DOI: 10.1016/j.jeurceramsoc.2011.11.043

Google Scholar

[9] Moskal G., Swadźba L., Hetmańczyk M., Witala B., Mendala J., Sosnowy P., Journal of the European Ceramic Society 32 (2012) (2035).

DOI: 10.1016/j.jeurceramsoc.2011.12.004

Google Scholar

[10] Wu J., Wei X.Z., Padture N.P., Klemens P.G., Gell M., Garcı´a E., Miranzo P., Osendi M.I., J Am Ceram Soc 85 (2002) 3031.

Google Scholar

[11] Vassen R., Cao X.Q., Tietz F., Basu D., Stover D., J Am Ceram Soc 83 (2000) (2023).

Google Scholar

[12] Cao X.Q., Vassen R., Stover D., J Eur Ceram Soc 24 (2004) 1.

Google Scholar

[13] Maloney M.J., Thermal barrier coating systems and materials. U.S. Patent No. 6284323, (2001).

Google Scholar

[14] Xu Q., Pan W., Wang J., Qi L., Miao H., Kazutaka M., Taiji T., Materials Letters 59 (2005) 2804.

Google Scholar

[15] Cao X., Ma Z., Liu Y., Du Z., Zheng K., Rare Metal Materials and Engineering 42 (2013) 1134.

Google Scholar

[16] Popov V. V., Petrunin V. F., Korovin S. A., Menushenkov A. P., Kashurnikova O. V., Chernikov R. V., Yaroslavtsev A. A., Zubavichus Ya. V., Russian Journal of Inorganic Chemistry 56 (2011) 1538.

DOI: 10.1134/s0036023611100184

Google Scholar

[17] Wang C., Zinkevich M., Aldinger F., Int J Mat Res 98 (2007) 91.

Google Scholar

[18] Rushton M. J. D., Grimes R. W., Stanek C. R., et al., J Mater Res. 19 (2004) 1603.

Google Scholar

[19] Marder J.M., Mitchell T.E., Heuer A.H., Acta Metall 31 (1979) 298.

Google Scholar

[20] Foex M., Traverse J.P., Rev Int Hautes Temp Refract, 3 (1966) 429.

Google Scholar