[1]
F.G. Hammitt: Observations of cavitation damage in a flowing system. Trans. Am. Soc. Mech. Engrs, J. Basic Eng. 85 (1963) 347-359.
DOI: 10.1115/1.3656601
Google Scholar
[2]
R.T. Knapp, J.W. Daily, F.G. Hammit: Cavitation. New York: McGraw - Hill, (1970).
Google Scholar
[3]
A. Thiruvengadam: Handbook of cavitation erosion. Tech. Rep. (1974) 7301-1, Hydronautics, Inc., Laurel, Md.
Google Scholar
[4]
A. Thiruvengadam: The concept of erosion strength. in erosion by cavitation or impingement. Am. Soc. Testing Mats. STP 408 (1967) 22-35.
Google Scholar
[5]
M.J. Hobbs, W.C. Brunton: Comparative erosion tests on ferrous materials, Part I: Drop impact tests, Report 205, National Engineering Laboratory, East Kilbride, Glasgow, (1965).
Google Scholar
[6]
M.J. Hobbs: Erosion by cavitation or impingement. STP. 408 Philadelphia, PA, 1967: 159.
Google Scholar
[7]
B.S. Mann, V.: An experimental study to correlate water jet impingement erosion resistance and properties of metallic materials and coatings. Wear 253(5-6) (2002) 651-661.
DOI: 10.1016/s0043-1648(02)00118-7
Google Scholar
[8]
M.J. Robinson, F. G. Hammitt: Detailed damage characteristics in a cavitating Venturi. Trans. ASME, J. Basic Engr. 89 D1 (1967) 161-173.
DOI: 10.1115/1.3609548
Google Scholar
[9]
B. C. S. Rao, N. S. L. Rao, K. Seetharamiah: Cavitation erosion studies with Venturi and rotating disk in water. Journal of Basic Engineering 92(3) (1970) 563-573.
DOI: 10.1115/1.3425070
Google Scholar
[10]
J.W. Tichler, A. W. J. de Gee, H. C. van Elst: Erosion, wear, and interfaces with corrosion. STP 567, ASTM, Philadelphia, PA (1974) 56.
DOI: 10.1520/stp32219s
Google Scholar
[11]
W. Bedkowski, G. Gasiak, C. Lachowicz, A. Lichtarowicz, T. Lagoda, E. Macha: Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear 230 (1999) 201-209.
DOI: 10.1016/s0043-1648(99)00105-2
Google Scholar
[12]
F. J. Heymann: Characterization and determination of erosion resistance. American Society for Testing and Materials ASTM STP 474 (1970) 212-222.
Google Scholar
[13]
S. Hattori, R. Ishikura, Q. Zhang: Construction of database on cavitation erosion and analyses of carbon steel data. Wear 257 (2004) 1022-1029.
DOI: 10.1016/j.wear.2004.07.002
Google Scholar
[14]
Z. Reymann, K. Steller: Ocena odporności materiałów na działanie kawitacji przepływowej. Zeszyty Naukowe IMP PAN 76 (1978) 95-125.
Google Scholar
[15]
R. H. Richman, W. P. McNaughton: Correlation of cavitation erosion behaviour with mechanical properties of metals. Wear 140, (1990), 63-82.
DOI: 10.1016/0043-1648(90)90122-q
Google Scholar
[16]
R. T. Knapp, Recent investigations of the mechanics of cavitation and cavitation damage. Trans. ASME 77 (1955) 1045-1054.
DOI: 10.1115/1.4014586
Google Scholar
[17]
K. K. Shalnev, I.I. Varga, D Sebestyen: Investigation of the scale effects of cavitation erosion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 260 No. 1110 (1966) 256-266.
DOI: 10.1098/rsta.1966.0049
Google Scholar
[19]
C.T. Kwok, H.C. Man, F.T. Cheng, Surf. Coat. Technol., 99 (1998), p.295–304.
Google Scholar
[20]
J. Chmiel, J. Steller, A. Krella, W. Janicki W: Badania zużycia korozyjno-kawitacyjnego na stanowisku wibracyjnym ze spoczywająca próbką, Problemy eksploatacji, nr 1/2010 (76) , pp.91-100, ISSN 1232-9312.
Google Scholar