Stresses in the Surface Layer and Hydrogen Absorption and Diffusion in Cavitation Condition

Article Preview

Abstract:

Cavitation attack in liquids generated a various states of stresses in surface layers of metals. Differences in stress state effects on hydrogen absorption activated by the cavitation implosion. Results of XRD investigation and FEM modeling shows on inhomogenity of process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 225)

Pages:

131-138

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.S. Plesset, R.B. Chapman, Report No. 85-09, Office of Naval Research 1970., (1970).

Google Scholar

[2] J. Chmiel, J. Steller, A. Krella, W. Janicki, Badania zużycia korozyjno-kawitacyjnego na stanowisku wibracyjnym ze spoczywająca próbką, Probl. Eksploat. 1 (2010) 91–100.

Google Scholar

[3] W. Beck, J.O. Bockris, J. McBreen, L. Nanis, Hydrogen Permeation in Metals as a Function of Stress, Temperature and Dissolved Hydrogen Concentration, Proc. R. Soc. Lond. A 22. vol. 290 (n. d. ) 220–235.

DOI: 10.1098/rspa.1966.0046

Google Scholar

[4] A. Zielinski, E. Lunarska, M. Smialowski, The interaction of hydrogen atoms and dislocations in irons of different purity, Acta Metall. 25 (1977) 551–556.

DOI: 10.1016/0001-6160(77)90194-8

Google Scholar

[5] T. Boellinghaus, H. Dangeleit, A. Hoffmeister, A scatterband for hydrogen diffusion coefficients in microalloyed and low carbon structural steels, Weld. World / Le Soudage Dans Le Monde. 35 (1995) 149.

Google Scholar

[6] A. Atrens, N. Winzer, G. Song, W. Dietzel, C. Blawert, Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium, Adv. Eng. Mater. Volume 8, (n. d. ) 749–751.

DOI: 10.1002/adem.200600050

Google Scholar

[7] J. Toribio, Role of hydrostatic stress in hydrogen diffusion in pearlitic steel, J. Mater. Sci. 28 (1993) 2289–2298.

DOI: 10.1007/bf01151655

Google Scholar

[8] S. Hirnyj, V. Skalsky, L. Botvina, The Effect of Electrolytically Absorbed Hydrogen on Young ' s Modulus of Structural Steel, in: ECF 19 Proc., (2012).

Google Scholar

[9] E. Lunarska, K. Nikiforov, E. Sitko, Stress corrosion cracking of bainite 0. 3C-1Cr-1Mn-1Si-1Ni type steel in acid rain simulated solution, Werkstoffe Und Korrosion. 54 (2004) 373–380.

DOI: 10.1002/maco.200303747

Google Scholar

[10] E. Lunarska, O. Chernyayeva, Spivak L., Hydrogen-straining effects in Al, J. Alloy. Compd. 404-406C (2005) 269–272.

DOI: 10.1016/j.jallcom.2005.02.094

Google Scholar

[11] O. Balytskiiy, J. Chmiel, P. Krause, J. Niekrasz, Role of hydrogen in the cavitation fracture of 45 steel in lubricating media, Mater. Sci. 45 (2009) 39–42.

DOI: 10.1007/s11003-010-9227-y

Google Scholar

[12] B. Baranowski, Diffusion in Elastic Media with Stress Fields, in: S. Sieniutycz, P. Salomon (Eds. ), Adv. Thermodyn., Flow, Diffus. Rate Process., Taylor and Francis, New York, 1992: p.168–199.

Google Scholar

[13] R.J.K. Wood, J.A. Wharton, A.J. Speyer, K.S. Tan, Investigation of erosion – corrosion processes using electrochemical noise measurements, Tribol. Int. 35 (2002) 631–641.

DOI: 10.1016/s0301-679x(02)00054-3

Google Scholar

[14] Y.G. Zheng, S.Z. Luo, W. Ke, Cavitation erosion-corrosion behaviour of CrMnB stainless overlay and 0Cr13Ni5Mo stainless steel in 0. 5 M NaCl and 0. 5 M HCL solutions, Tribol. Int. 41 (2008) 1181–1189.

DOI: 10.1016/j.triboint.2008.02.011

Google Scholar

[15] J. Chmiel, E. Łunarska, Effect of Cavitation on Absorption and Transport of Hydrogen in Iron, Solid State Phenom. 183 (2012) 25–30.

Google Scholar

[16] J. Skrzypek, A. Baczmanski, W. Ratuszek, E. Kusior, New approach to stress analysis based on grazing-incidence X-ray diffraction, J. Appl. Crystallogr. 34, part 4 (n. d. ) 427–435.

DOI: 10.1107/s0021889801005404

Google Scholar

[17] J. Chmiel, N509 2925 35 Report. Grant of Polish Ministry of Science and Higher Education Zużycie korozyjno - kawitacyjne i wodorowo - kawitacyjne materiałów stosowanych w budowie środków transportu, (2010).

Google Scholar

[18] M.S. Plesset, A. Prosperetti, Bubble Dynamics and Cavitation, Annu. Rev. Fluid Mech. 9 (1977) 145–185.

DOI: 10.1146/annurev.fl.09.010177.001045

Google Scholar

[19] M. von Smoluchowski, Bull. Int. Acad. Sci. Cracovie, Bull. Int. Acad. Sci. Cracovie,. 184 (1903).

Google Scholar

[20] L. Chincholle, F. Goby, Etudes de la Charge electrique des bulles de cavitation. Application eventuelle a la detection se seuil de cavitation, in: Two Phase Flow Cavitation Power Gener. Syst., Grenoble, 1976: p.137–143.

Google Scholar

[21] A. Barbulescu, V. Marza, Electrical Effects Induced At The Boundary Of An Acoustic Cavitation Zone, Acta Phys. Pol. B. 37 (2006) 508–518.

Google Scholar

[22] O.I. Balyts'kyi, J. Chmiel, L. Dorobczyński, Analysis of electrochemical oscillations under conditions of vibration cavitation, Mater. Sci. 47 (2011) 21–25.

DOI: 10.1007/s11003-011-9363-z

Google Scholar

[23] B.G. Gireń, J. Steller, Random multistage input and energy partition approach to the description of cavitation erosion process, Stoch. Environ. Res. Risk Assess. 23 (2009) 263–273.

DOI: 10.1007/s00477-007-0200-8

Google Scholar

[24] H.M. Nykyforchyn, O.Z. Student, Influence of Hydrogen on Formation of Fatigue Tresholds in Structural Steels, Materials Science, Vol. 37, No. 2. 2001, pp.252-263.

Google Scholar