Improvement of the Corrosion Resistance of Biomedical Magnesium Alloys in the Ringer’s Solution Using Protective Coatings

Article Preview

Abstract:

The corrosion resistance of magnesium alloys depends on their microstructure, especially the presence of different intermetallic phases and precipitates. In this paper, the electrochemical behaviour of Mg1Ca and Mg1Ca1Si magnesium alloys has been investigated in the Ringer’s solution at 37 °C. In order to improve the corrosion resistance of these magnesium alloys composite coatings were fabricated by modification of a chitosan layer. The coatings were prepared by dip-coating in a chitosan solution and then modified by electrochemical deposition of a layer from a solution containing fluorine ions and water glass. The electrochemical performance of chitosan and chitosan modified coated alloys was evaluated by linear sweep voltamperometry and electrochemical impedance spectroscopy. The coated magnesium alloys possess suitable corrosion behaviour for the application as biodegradable implant material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

459-462

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Ghali, Magnesium and magnesium alloys, Uhlig's Corrosion Handbook (2000) 793-830.

Google Scholar

[2] M.M. Avedesian, H. Baker, ASM Speciality Handbook: Magnesium and Magnesium Alloys, (1999).

Google Scholar

[3] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, Biomaterials 26 (2005) 3557.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[4] P.S. Mark, M.P. Alexis, H. Jarewala, D. George, Biomaterials 27 (2006) 1728.

Google Scholar

[5] Y.H. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta, Ch. Sfeir, Mater. Sci. Eng. C29 (2009) 1814.

Google Scholar

[6] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728–34.

Google Scholar

[7] N.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Clin. Chim. Acta 294 (2000) 1.

DOI: 10.1016/s0009-8981(99)00258-2

Google Scholar

[8] U. Pleśniak, Praca inżynierska:, Korozja biomedycznych stopów magnezu w płynach fizjologicznych, Akademia Górniczo – Hutnicza, Wydział Odlewnictwa, Kraków (2013).

Google Scholar

[9] X. N Gu, Y.F. Zhgeng, Mater. Sci. China 4(2) (2011) 111.

Google Scholar

[10] L.P. Xu, G.N. Yu, E. Zhang, F. Pan, K. Yang, J. Biomed. Mater. Res. 83A (2007) 703.

Google Scholar

[11] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, Biomaterials 26 (2005) 3557.

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[12] Y. Xin, T. Hu, P.K. Chu, Acta Biomat. 7 (2011) 1452.

Google Scholar

[13] X. Gu, N. Gu, Y.F. Zheng, L.J. Chen, Biomed. Mater. 4 (2009) 065011.

Google Scholar

[14] H. Meifeng, L. Lei, W. Yating, T. Zhixin, H. Wenbin, Corros. Sci. 50 (2008) 3267.

DOI: 10.1016/j.corsci.2008.09.034

Google Scholar

[15] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Fayerabend, Curr. Opin. Solid State Mater. Sci. 12 (2008) 63-72.

Google Scholar

[16] G. Wu, J.M. Ibrahim, P.K. Chu, Surf. Coat. Tech. 232 (2012) 899.

Google Scholar

[17] H. Hornberger, S. Virtanen, A.R. Boccaccini, Acta Biomater. 8 (2012) 2442.

Google Scholar

[18] Z. Li, X. Gu, S. Lou, Y. Zheng, Biomater. 29 (2008) 1329.

Google Scholar

[19] X.N. Gu, W. Zheng, Y. Cheng, Y.F. Zheng, Acta Biomater. 5 (2009) 2790.

Google Scholar

[20] I. Kot, D. Drożdż, U. Pleśniak, H. Krawiec, Inż. Mater. 34(5) (2013) 481.

Google Scholar