Corrosion Properties of Anodically Oxidised and Alkaline Treated Titanium Nitride

Article Preview

Abstract:

The article compares the corrosion properties of oxide layers formed on titanium nitride (obtained by means of glow-discharge nitriding) using anodic and plasma oxidation. The corrosion properties are analysed in relation to the surface morphology and microstructure of the layers. The oxidation processes were carried out in phosphoric acid (V) (25wt%) containing Ca2+ calcium ions. In this environment, oxide layers were produced using two anode oxidation potentials: 5 V and 9.5 V and two plasma oxidation potentials of 200 V and 600 V. The layers were then subjected to alkaline treatment in concentrated NaOH. The concentration of acid and calcium ions contained in the oxidation solution affected the surface morphology and corrosion properties of the oxide layers obtained after alkaline treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 227)

Pages:

467-470

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kurtz et al., J. Bone Joint Surg. A 89 (2007) 780–785.

Google Scholar

[2] J. Marciniak, Biomateriały, Wydawnictwo Politechniki Śląskiej, Gliwice, 2002 (in Polish).

Google Scholar

[3] D. Krupa, J Baszkiewicz, et al., Surf. Coat. Technol. 205 (2010) 1743.

Google Scholar

[4] H. Ishizawa, M. Ogino, J. Biomed. Mater. Res. 29 (1995) 65.

Google Scholar

[5] J.R. Sobiecki, M. Ossowski, A. Brojanowska, B. Rajchel and T. Wierzchoń, Proc. 17th Congress International Fed. Heat Treat. Surf. Eng. Kobe Japan 27-30 October 2008 197-200.

Google Scholar

[6] A. Scarano, M. Piattelli, G. Vrespa, S. Caputi and A. Piattelli, J. Oral Implant. 29 (2003) 80-85.

DOI: 10.1563/1548-1336(2003)029<0080:baotna>2.3.co;2

Google Scholar

[7] J.R. Sobiecki et. al., Proc. Inter. Conf. High Mat Tech 19-23 October 2009 Kiev, 326.

Google Scholar

[8] Kokubo et al., Titania-based bioactive materials, J. Europ. Cer. Soc. 27 (2007) 1553.

Google Scholar

[9] A. Brojanowska, K. Popławski, M. Tarnowski, E. Marciniak, J.R. Sobiecki, Odporność korozyjna stopu tytanu Ti6Al4V azotowanego jarzeniowo na potencjale katody i w obszarze plazmy w różnej temperaturze obróbki, Inżynieria Materiałowa (Materials Engineering) 196 (2013).

Google Scholar