Electrodeposition of the Ni+MoS2 Composite Electrocatalysts

Article Preview

Abstract:

The object of this work was to obtain the Ni+MoS2 composite electrocoatings by in situ co-deposition of molybdenum (IV) sulfide particles (< 2 μm) and nickel from a suspension plating bath. Physical and chemical characterization of the coatings was carried out using SEM, EDS, and XRD methods. The chemical composition of these coatings of a diphase structure (Ni, MoS2) was found to be dependent on the current density and temperature of electrodeposition. The optimal electrochemical conditions for embedding of the maximum amount of 26.4 wt.% of MoS2 into the crystalline nickel matrix, were experimentally determined. The co-deposition process of MoS2 particles and metallic nickel was discussed based on the adsorption mechanism. Such porous Ni+MoS2 composite coatings can be proposed as electrode material for hydrogen electroevolution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

125-131

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Shi, C. Sun, W. Liu: Appl. Surf. Sci. Vol. 254 (2008), p.6880.

Google Scholar

[2] P.A. Gay, P. Berçot, J. Pagetti: Surf. Coat. Technol. Vol. 140 (2001), p.147.

Google Scholar

[3] A. Grosjean, M. Rezrazi, J. Takadoum, P. Berçot: Surf. Coat. Technol. Vol. 137 (2001), p.92.

Google Scholar

[4] A.F. Zimmerman, G. Palumbo, K.T. Aust, U. Erb: Mater. Sci. Eng. A Vol. 328 (2002), p.137.

Google Scholar

[5] W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang: Carbon Vol. 41 (2003), p.215.

Google Scholar

[6] K.H. Hou, M.D. Ger, L.M. Wang, S.T. Ke: Wear Vol. 253 (2002), p.994.

Google Scholar

[7] A. Albu-Yaron, C. Lévy-Clément, A. Katty, S. Bastide, R. Tenne: Thin Solid Films Vol. 361-362 (2000), p.223.

DOI: 10.1016/s0040-6090(99)00838-x

Google Scholar

[8] Y-C. Chang, Y-Y. Chang, C-I. Lin: Electrochim. Acta Vol. 43 (1998), p.315.

Google Scholar

[9] M.F. Cardinal, P.A. Castro, J. Baxi, H. Liang, F.J. Williams: Surf. Coat. Technol. Vol. 204 (2009), p.85.

Google Scholar

[10] Z-j. Huang, D-s. Xiong: Surf. Coat. Technol. Vol. 202 (2008), p.3208.

Google Scholar

[11] E.B. Castro, M.J. de Giz, E.R. Gonzalez, J.R. Vilche: Electrochim. Acta, Vol. 42 (1997), p.951.

Google Scholar

[12] E. Saraloğlu Güler, E. Konca, I. Karakaya: Int. J. Electrochem. Sci. Vol. 8 (2013), p.5496.

Google Scholar

[13] N. Guglielmi: J. Electrochem. Soc. Vol. 119 (1972), p.1009.

Google Scholar

[14] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[15] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar