Electrodeposition of the Ni-Mo+MoO2 Composite Electrocoatings

Article Preview

Abstract:

The Ni-Mo+MoO2 composite coatings were obtained onto the steel substrate using an in situ co-deposition of a Ni-Mo alloy and MoO2 powder particles maintained in suspension in the potassium pyrophosphate bath. To characterize the physical and chemical properties of the obtained coatings, SEM, EDS, and XRD methods, were applied. It was found that the co-deposited MoO2 particles strongly influenced the properties of the Ni-Mo alloy coating. In comparison with the comparable Ni-Mo deposit containing 45 at.% of Mo, the presence of MoO2 embedded into the composite coating diminished the content of Mo alloyed with Ni to 23 at.%. The electrodeposited Ni-Mo+MoO2 composite coating obtained under proposed electrochemical conditions contained 25 at.% of MoO2. The effect of the embedded MoO2 as composite component on changes of the surface morphology and structure of the Ni-Mo binary alloy, was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

132-137

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, The National Academy of Sciences, 2004, Washington.

Google Scholar

[2] A. Lasia: Applications of the Electrochemical Impedance Spectroscopy to Hydrogen Adsorption, Evolution and Absorption into Metals, in: Modern Aspects of Electrochemistry, Vol. 35, B.E. Conway, R.E. White (Eds. ), Kluwer Acaddemic/Plenum Publishers, New York (2002).

DOI: 10.1007/0-306-47604-5_1

Google Scholar

[3] B. Łosiewicz: Current Challenges of Hydrogen Energy, in: Fuelling the Future: Advances in Science and Technologies for Energy Generation, Transmission and Storage, A. Mendez-Vilos (Ed. ), BrownWalker Press, 2012, pp.312-316.

Google Scholar

[4] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[5] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[6] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[7] C. Hitz, A. Lasia: J. Electroanal. Chem. Vol. 500 (2001), p.213.

Google Scholar

[8] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[9] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[10] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[11] N.V. Krstajić, L. Gajić-Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović: Int. J. Hydrogen Energ. Vol. 36 (2011), p.6441.

DOI: 10.1016/j.ijhydene.2011.02.105

Google Scholar

[12] N.V. Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, V.D. Jović: Int. J. Hydrogen Energ. Vol. 36 (2011), p.6450.

DOI: 10.1016/j.ijhydene.2011.02.106

Google Scholar

[13] V.D. Jović, U. Lačnjevac, B.M. Jović, N.V. Krstajić: Electrochim. Acta Vol. 63 (2012), p.124.

DOI: 10.1016/j.electacta.2011.12.078

Google Scholar

[14] U. Lačnjevac, B.M. Jović, V.D. Jović, N.V. Krstajić: J. Electroanal. Chem. Vol. 677 (2012), p.31.

Google Scholar

[15] Y. Zhao, Y. Zhang, Z. Yang, Y. Yan, K. Sun: Sci. Technol. Adv. Mater. Vol. 14 (2013), p.043501.

Google Scholar

[16] N.V. Krstajić, V.D. Jović, L. Gajić-Krstajić, B.M. Jović, A.L. Antozzi G.N. Martelli: Int. J. Hydrogen Energ. Vol. 33 (2008), p.3676.

DOI: 10.1016/j.ijhydene.2015.06.127

Google Scholar

[17] M.H. Allahyarzadeh, B. Roozbehani, A. Ashrafi, S.R. Shadizadeh: Surf. Coat. Technol. Vol. 206 (2011), p.137.

Google Scholar