Electrodeposition and Thermal Treatment of Nickel Coatings Containing Cobalt

Article Preview

Abstract:

The Ni-P and Ni-Co-P coatings were electrodeposited at the deposition current density of jdep = -20 mA cm-2. Thermal treatment of these coatings was conducted in air at 400oC for 1 h. Scanning electron microscopy (SEM) was used for surface morphology characterization of the coatings. Phase composition was investigated by X-ray diffraction (XRD) method. Atomic absorption spectrometry (AAS) was applied to specify chemical composition of obtained coatings. It was found that introduction of Co into amorphous Ni matrix caused the surface development of the obtained deposit. The Ni-P coating revealed an amorphous structure. The Ni-Co-P coating was formed of the amorphous matrix and the amorphous alloy ingredient. Thermal treatment of the coatings allowed to obtain new multi-phase materials with slightly developed surface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

158-162

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Lasia: Modeling of Impedance of Porous Electrodes, in: Modern Aspects of Electrochemistry, Vol. 43, M. Schlesinger (Ed. ), Springer, (2009).

Google Scholar

[2] A. Lasia: Hydrogen Evolution Reaction, in: Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vielstich W., Gasteiger H.A., Lamm A. (Eds. ), Vol. 2: Electrocatalysis, John Wiley & Sons, Ltd., Chichester, 2003, pp.416-440.

Google Scholar

[3] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[4] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[5] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[6] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[7] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[8] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[9] M. Popczyk, W. Bajdur: Galvanotechnik Vol. 3(90) (1999), p.662.

Google Scholar

[10] M. J. De Giz, G. Tremiliosi-Filho, E. R. Gonzalez, S. Srinivasan, A. J. Appleby: Int. J. Hydrogen Energ. Vol. 20 (1995), p.423.

DOI: 10.1016/0360-3199(94)00068-b

Google Scholar