Aims of Electrocatalysis

Article Preview

Abstract:

Electrocatalysis as a catalytic process involving oxidation or reduction through the direct transfer of electrons is of key importance subject in various fields of chemistry and associated sciences. Heterogeneous electrocatalysis is especially important to the development of water oxidation and fuel cells catalysts. This paper presents the brief description of the electrocatalysis and the mechanism of electrochemical reactions. Different factors and their influence on electrocatalytic activity, have been discussed. Role of nanoparticles in electrocatalysis received a particular emphasis. Long-term tasks of electrocatalysis were also definied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

179-186

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Trasatti: Int. J. Hydrogen Energ. Vol. 20 (10) (1995), p.835.

Google Scholar

[2] G.Q. Lu, A. Wieckowski: Curr. Opin. Colloid In. Vol. 5 (2000), p.95.

Google Scholar

[3] M. Açikyildiz, A. Gürses, M.E. Korucu, K. Güneş: Electrocatalysis and the Production of Nanoparticles, Chapter 7, in: Modern Electrochemical Methods in Nano, Surface and Corrosion Science, M. Aliofkhazraei, Ed., Intech, 2014, http: /dx. doi. org/10. 5772/58340.

Google Scholar

[4] J. Koryta, J. Dvořák, L. Kavan: Principles of Electrochemistry, Second Edition, John Wiley & Sons, Chichester, (1993).

Google Scholar

[5] A. Budniok: Materiały elektrodowe stosowane w organicznej syntezie elektrochemicznej, Prace Naukowe Uniwersytetu Śląskiego, No. 1352, Katowice, (1993).

Google Scholar

[6] B. Łosiewicz, L. Birry, A. Lasia: J. Electroanal. Chem. Vol. 611 (2007), p.26.

Google Scholar

[7] B. Łosiewicz, M. Martin, C. Leboin, A. Lasia: J. Electroanal. Chem. Vol. 649 (2010), p.198.

Google Scholar

[8] B. Łosiewicz, R. Jurczakowski, A. Lasia: Electrochim. Acta Vol. 56 (2011), p.5746.

Google Scholar

[9] B. Łosiewicz, R. Jurczakowski, A. Lasia: Electrochim. Acta Vol. 80 (2012), p.292.

Google Scholar

[10] Interfacial Electrochemistry: Theory, Experiment, and Applications, A. Wieckowski (Ed. ), New York, Marcell Dekker, (1999).

Google Scholar

[11] B.D. McNicol, D.A.J. Rand, K.R. Williams: J. Power Sources Vol. 83 (1999), p.15.

Google Scholar

[12] S.J.C. Cleghorn, X. Ren, T.E. Springer, M.S. Wilson, C. Zawodzinski, T.A. Zawodzinski, S. Gottesfeld: Int. J. Hydrogen Energ. Vol. 22 (1997), p.1137.

Google Scholar

[13] A.K. Shukla, P.A. Christensen, A.J. Dickinson, A.A. Hamnett: J. Power Sources Vol. 76 (1998), p.54.

Google Scholar

[14] M. Baldauf, W. Preidel: J. Power Sources Vol. 84 (1999), p.161.

Google Scholar

[15] S.J. Lee, S. Mukerjee, E.A. Ticianelli, J. McBreen: Electrochim. Acta Vol. 44 (1999), p.3283.

Google Scholar

[16] S.D. Park, J.M. Vohs, R.J. Gorte: Nature Vol. 404 (2000), p.265.

Google Scholar

[17] A. Mathur, S. Bali, M. Balakrishnan, R. Perumal, V.S. Batra: Int. J. Energy Res. Vol. 23 (1999), p.1177.

Google Scholar

[18] M. Ghouse, H. Abaoud, A. Al-Boeiz: Appl. Energy Vol. 65 (2000), p.303.

Google Scholar

[19] Y. Zhao, H. Yu, F. Xie, Y. Liu, Z. Shao, B. Yi: J. Power Sources Vol. 269 (2014), p.1.

Google Scholar

[20] B. Coq, F. Figueras: Coordi. Chem. Rev. Vol. 180 (1998), p.1753.

Google Scholar

[21] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[22] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[23] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[24] J.G. da Silva, M.O.F. Goulart, M. Navarro: Tetrahedron Vol. 55 (1999), p.7405.

Google Scholar

[25] S. Trasatti: Interfacial Electrochemistry of Conductive Oxides for Electrocatalysis, in: Interfacial Electrochemistry: Theory, Experiment, and Applications, A. Wieckowski (Ed. ), New York, Marcel Dekker, (1999).

DOI: 10.1016/s0022-0728(00)00066-8

Google Scholar

[26] S. Kaneco, K. Iiba, N. Hiei, K. Ohta, T. Mizuno, T. Suzuki: Electrochim. Acta Vol. 44 (1999), p.4701.

DOI: 10.1016/s0013-4686(99)00262-5

Google Scholar

[27] K. Vijayaraghavan, T.K. Ramanujam, N. Balasubramanian: Waste Manage Vol. 19 (1999), p.319.

Google Scholar

[28] M. Sheng, Y. Gao, J. Sun, F. Gao: Biosens. Bioelectron. Vol. 58 (2014), p.351.

Google Scholar

[29] J. O'M. Bockris: J. Serb. Chem. Soc. Vol. 70 (3) (2005), p.475.

Google Scholar

[30] S.H. Jordanov, P. Paunović, O. Popovski, A. Dimitrov, D. Slavkov: Bull. Chem. Technol. Macedonia Vol. 23 (2) (2004), p.101.

Google Scholar

[31] A.S. Bandarenka, M.T.M. Koper: J. Catal. Vol. 308 (2013), p.11.

Google Scholar

[32] J. Arvia, R.C. Salvarezza, W.E. Triaca: J. New Mat. Elect. Syst. Vol. 7 (2004), p.133.

Google Scholar

[33] Y. Gründer, M.D. Fabian, S.G. Booth, D. Plana, D.J. Fermín, P.I. Hill, R.A.W. Dryfe: Electrochim. Acta Vol. 110 (2013), p.809.

DOI: 10.1016/j.electacta.2013.03.185

Google Scholar

[34] M.A. Domínguez-Crespo, E. Ramírez-Meneses, A.M. Torres-Huerta, V. Garibay-Febles, K. Philippot: Int. J. Hydrogen Energ. Vol. 37 (2012), p.4798.

DOI: 10.1016/j.ijhydene.2011.12.109

Google Scholar

[35] N.V. Long, M. Ohtakid, T.D. Hienc, J. Randya, M. Nogamia: Electrochim. Acta Vol. 56 (2011), p.9133.

Google Scholar

[36] W. Chen, D. Ny, S. Chen: J. Power Sources Vol. 195 (2010), p.412.

Google Scholar

[37] K.C. Neyerlin, R. Srivastava, C. Yua, P. Strasser: J. Power Sources Vol. 186 (2009), p.261.

Google Scholar

[38] G. Ramos-Sànchez, H. Yee-Madeira, O. Solorza-Feria: Int. J. Hydrogen Energ. Vol. 33 (2008), p.3596.

Google Scholar

[39] D.R. Lycke, E.L. Gyenge: Electrochim. Acta Vol. 52 (2007), p.4287.

Google Scholar

[40] Y. Liu, Y. Wang, J. Zhang, S. Shi, P. Feng, T. Wang: Catal. Commun. Vol. 10 (2009), p.1244.

Google Scholar