Hydrogen Evolution Reaction on Nickel-Phosphorus+Titanium Oxides Composite Electrocoatings

Article Preview

Abstract:

One way to obtain hydrogen of high purity on an industrial scale is the electrolysis of water. New electrode materials with the catalytic ability to reduce the energetic barrier of the process have been looked for for many years. The possibility of tailoring the catalytic properties of the electrode material by obtaining it through electrolysis is of particular interest. These electrode materials include materials based on the amorphous nickel matrix containing TiO2 as its crystalline phase and non-stoichiometric titanium oxides which, thanks to their coexistence in the layer, make up effective oxidation-reduction pairs that catalyse the evolution of hydrogen. The following study is a critical analysis of the parameters characterizing the Ni-P+Ti oxides composite layers for hydrogen evolution. It includes a discussion on the correlation between the chemical and phase composition, morphology, surface development and roughness of the composite layer and its activity in the process of hydrogen evolution. It was found out that the Ni-P+Ti oxides layers can be recommended as cathode electrode materials for the electrolysis of water.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

187-199

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M.F. Santos, C.A.C. Sequeira, J.L. Figueiredo: Quím. Nova Vol. 36 (8) (2013), p.1176.

Google Scholar

[2] A. Lasia: Modeling of Impedance of Porous Electrodes, in: Modern Aspects of Electrochemistry, Vol. 43, M. Schlesinger (Ed. ), Springer, (2009).

Google Scholar

[3] A. Lasia: Hydrogen Evolution Reaction, in: Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vielstich W., Gasteiger H.A., Lamm A. (Eds. ), Vol. 2: Electrocatalysis, John Wiley & Sons, Ltd., Chichester, 2003, pp.416-440.

Google Scholar

[4] C. Hitz, A. Lasia: J. Electroanal. Chem. Vol. 500 (2001), p.213.

Google Scholar

[5] C. Hitz, A. Lasia: J. Electroanal. Chem. Vol. 532 (2002), p.133.

Google Scholar

[6] B. Łosiewicz: Dispersion Ni-P+Titanium Oxides Electrode Materials for Hydrogen Evolution, PhD Thesis, University of Silesia, 2002, Poland.

Google Scholar

[7] B. Losiewicz, A. Stepien, D. Gierlotka, A. Budniok: Thin Solid Films Vol. 349 (1999), p.43.

Google Scholar

[8] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[9] D. Gierlotka, E. Rowinski, A. Budniok, E. Lagiewka: J. Appl. Electrochem. Vol. 27 (1997), p.1349.

Google Scholar

[10] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[11] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[12] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[13] B. Łosiewicz: Dispersion Ni-P+Titanium Oxides Electrode Materials for Hydrogen Evolution, Proc. Int. Conference Modern Electroplating Processes – Operating of Electroplating Plants in Terms of Polish and EU Regulations (2004).

Google Scholar

[14] B. Łosiewicz: Adaptation of Guglielmi's Model for Electrodeposition of Composite Ni-P+TiO2 Coatings, Proc. Int. Conference Modern Electroplating Processes – Operating of Electroplating Plants in Terms of Polish and EU Regulations (2004).

Google Scholar

[15] B. Łosiewicz, I. Napłoszek-Bilnik, A. Budniok, Nanocomposite Electrocoatings of Ni Containing a Powder of NiAl Intermetallic Phase as Precursor Electrode for the Hydrogen Evolution Reaction on Raney-Ni Cathodes, Proc. Int. Hyd. Energy Congress and Exhibition IHEC, 2005, pp.1-12.

Google Scholar

[16] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[17] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[18] C.N.R. Rao, B. Raveau: Transition Metal Oxides - Structure, Properties, and Synthesis of Ceramic Oxides, Second Edition, Wiley-VCH, New York, (1998).

DOI: 10.1002/(sici)1099-0739(199906)13:6<476::aid-aoc851>3.0.co;2-n

Google Scholar

[19] H. Hayashi, T. Matsunaga, I. Tari, Denki Kagaku Vol. 8 (1998), p.844.

Google Scholar

[20] N. Guglielmi: J. Electrochem. Soc. Vol. 119 (1972), p.1009.

Google Scholar

[21] A. Grosjean, M. Rezrazi, P. Bercot, M. Tachez: Met. Finish. Vol. 4 (1998), p.14.

Google Scholar

[22] M. Masuko, K. Mushiake: J. Met. Finish. Soc. Jpn. Vol. 128 (1977), p.534.

Google Scholar

[23] Y.Y. Chang, C.J. Lin: Electrochim. Acta Vol. 43 (1998), p.315.

Google Scholar

[24] J. Fransaer, J.P. Celis, R. Roos: J. Electrochem. Soc. Vol. 139 (1992), p.413.

Google Scholar