Production and Electrochemical Characterization of Nickel Based Composite Coatings Containing Chromium Group Metal and Silicon Powders

Article Preview

Abstract:

The Ni+Cr+Si, Ni+Mo+Si and Ni+W+Si composite coatings were obtained by electrodeposition of crystalline nickel from an electrolyte containing suspension of suitable metallic and non-metallic components (Cr, Mo, W and Si). These coatings were obtained galvanostatically at the current density of jdep = -0.100 A cm-2 and at the temperature of 338 K. Chemical composition of the coatings was determined by energy dispersive spectroscopy (EDS). The electrochemical activity of these electrocatalysts was studied in the process of hydrogen evolution reaction (HER) in 5 M KOH solution using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. The kinetic parameters of the HER on particular electrode materials were determined. It was found that Ni+Mo+Si composite coatings are characterized by enhanced electrochemical activity towards the HER as compared with Ni+W+Si and Ni+Cr+Si coatings due to the presence of Mo and increase in electrochemically active surface area.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

219-224

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Popczyk, A. Serek, A. Budniok: Nanotechnol. Vol. 30 (2005), p.265.

Google Scholar

[2] R.K. Shervedani, A. Lasia: J. Electrochem. Soc. Vol. 144 (1997), p.511.

Google Scholar

[3] R.K. Shervedani, A. Lasia: J. Electrochem. Soc. Vol. 144 (1997), p.2652.

Google Scholar

[4] D.E. Brown, M.N. Mahmood, A.K. Turner, S.M. Hall, P.O. Fogarty: Int. J. Hydrogen Energ. Vol. 7 (1982), p.405.

Google Scholar

[5] M. Popczyk, J. Kubisztal, A. Budniok: Electrochim. Acta Vol. 51 (2006), p.6140.

Google Scholar

[6] M. Popczyk, A. Budniok, E. Łągiewka: Mater. Charact. Vol. 58 (2007), p.371.

Google Scholar

[7] M. Popczyk, J. Kubisztal, A. Budniok: Mater. Sci. Forum Vol. 514-516 (2006), p.1182.

DOI: 10.4028/www.scientific.net/msf.514-516.1182

Google Scholar

[8] M.R. Gennero de Chialvo, A.C. Chialvo: J. Electroanal. Chem. Vol. 448 (1998), p.87.

Google Scholar

[9] C. Fan, D.L. Piron, A. Sleb, P. Paradis: J. Electrochem. Soc. Vol. 141 (1994), p.382.

Google Scholar

[10] H. Ezaki, T. Nambu, M. Morinaga, M. Udaka, K. Kawasaki: Int. J. Hydrogen Energ. Vol. 21 (1996), p.877.

Google Scholar

[11] L. Birry, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.735.

Google Scholar

[12] A. Lasia, in: B.E. Conway, R.E. White (Eds. ): Modern Aspects of Electrochemistry, New York, Kluwer/Plenum, Vol. 35 (2002), p.1.

Google Scholar

[13] T. Pajkossy: J. Electroanal. Chem. Vol. 364 (1994), p.111.

Google Scholar

[14] Z. Kerner, T. Pajkossy: Electrochim. Acta Vol. 46 (2000), p.207.

Google Scholar

[15] T. Pajkossy, T. Wandlowski, D.M. Kolb: J. Electroanal. Chem. Vol. 414 (1966), p.209.

Google Scholar

[16] R. de Levie, in: P. Delahay, C.W. Tobias (Eds. ): Advances in Electrochemistry and Electrochemical Engineering, New York, Wiley, Vol. 6 (1967), p.239.

Google Scholar

[17] A. Lasia: J. Electroanal. Chem. Vol. 500 (2001), p.30.

Google Scholar

[18] L. Chen, A. Lasia: J. Electrochem. Soc. Vol. 140 (1993), p.9.

Google Scholar