The Influence of Temperature of Electrodeposition on the Electrochemical Properties of Ni+MoS2 Composite Coatings

Article Preview

Abstract:

The Ni+MoS2 composite coatings were prepared by electrodeposition under galvanostatic conditions from the Ni-plating bath containing suspended MoS2 powder (100 mesh). Investigations of hydrogen evolution reaction (HER) were carried out using steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) in 5 M KOH solution on the coatings obtained at 30, 40, and 50°C. It was found that the kinetics of the HER on the Ni+MoS2 coatings decreases with the increase in the electrodeposition temperature of the coatings. This effect is attributed to decreasing content of MoS2 (from 26.4 to 18.0 wt.%) embedded into the Ni matrix as composite crystalline component having the electrocatalytic properties towards the HER and/or surface development of the coatings. The higher amount of MoS2 was embedded, the more porous electrodes containing pear-shape pores on the surface were produced what was detected by EIS.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

237-241

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[2] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[3] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[4] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[5] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[6] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[7] B. Łosiewicz, A. Stępień, D. Gierlotka, A. Budniok: Thin Solid Films Vol. 349 (1999), p.43.

DOI: 10.1016/s0040-6090(99)00175-3

Google Scholar

[8] J. Panek, E. Łągiewka, A. Budniok: Rev. Adv. Mater. Sci. Vol. 15 (2007), p.234.

Google Scholar

[9] L.B. Albertini, A.C.D. Angelo, E.R. Gonzalez: J. Appl. Electrochem. Vol. 22 (1992), p.888.

Google Scholar

[10] Y. Zhao, Y. Zhang, Z. Yang, Y. Yan, K. Sun: Sci. Technol. Adv. Mater. Vol. 14 (2013), p.043501.

Google Scholar

[11] B. Hinnemann, P.G. Moses, J.K. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov: J. Am. Chem. Soc. Vol. 127 (2005), p.5308.

Google Scholar

[12] A. Lasia: J. Electroanal. Chem. Vol. 500 (2001), p.30.

Google Scholar

[13] L. Chen, A. Lasia: J. Electrochem. Soc. Vol. 140 (1993), p.9.

Google Scholar

[14] C. Hitz, A. Lasia: J. Electroanal. Chem. Vol. 500 (2001), p.213.

Google Scholar