Comparison of Electrocatalytic Activity of the Composite Ni-P+NiO and Ni-P+Ni(OH)2 Coatings for Hydrogen Evolution

Article Preview

Abstract:

The object of this work were composite electrocoatings with an amorphous Ni-P matrix containing crystalline NiO or Ni (OH)2 component. The Ni-P+NiO, Ni-P+Ni (OH)2 and Ni-P electrocoatings were deposited on a Cu substrate under galvanostatic conditions at room temperature. The electrocatalysts were characterized in the process of hydrogen evolution in 5 M NaOH solution in dependence on their deposition conditions, phase composition and chemical constitution. Based on the potentiodynamic polarization curves, the parameters of the Tafel equation and exchange current densities, were determined as a criterion for estimation of catalytic properties of these electrode materials towards hydrogen evolution reaction in an alkaline medium.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

213-218

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Łosiewicz: Current Challenges of Hydrogen Energy, in: Fuelling the Future: Advances in Science and Technologies for Energy Generation, Transmission and Storage, A. Mendez-Vilos (Ed. ), BrownWalker Press, 2012, pp.312-316.

Google Scholar

[2] J.A. Turner, M.C. Williams, K. Rajeshwar: Hydrogen Economy Based on Renewable Energy Sources, Interface, The Electrochem. Soc. Vol. 13 (2004), p.24.

DOI: 10.1149/2.f04043if

Google Scholar

[3] A. Lasia: Hydrogen Evolution Reaction, in: Handbook of Fuel Cells – Fundamentals, Technology and Applications, W. Vielstich, H.A. Gasteiger, A. Lamm (Eds. ), Vol. 2: Electrocatalysis, John Wiley & Sons, Ltd., Chichester, 2003, pp.416-440.

Google Scholar

[4] D. Gierlotka, E. Rowinski, A. Budniok, E. Lagiewka: J. Appl. Electrochem. Vol. 27 (1997), p.1349.

Google Scholar

[5] B. Losiewicz, A. Stepien, D. Gierlotka, A. Budniok: Thin Solid Films Vol. 349 (1999), p.43.

Google Scholar

[6] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[7] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[8] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[9] I. Napłoszek-Bilnik, A. Budniok, B. Łosiewicz, L. Pająk, E. Łągiewka: Thin Solid Films Vol. 474 (2005), p.146.

DOI: 10.1016/j.tsf.2004.08.175

Google Scholar

[10] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[11] J. Tafel: Zeit. Physik. Chem. Vol. 50A (1905), p.641.

Google Scholar

[12] G.T. Burstein: Corr. Sci. Vol. 47 (2005), p.2858.

Google Scholar