[1]
N. Natahalla, M. Hafiz, M. Abdulkhalek, Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al-Si alloy modified with Na, Sb and Sr, J. of Mat. Science 34 (1999) 3555-3564.
Google Scholar
[2]
B. Juarez-Peňa, J. Asensio-Lozano, Influence of Sr and Ti grain refinement on morphology of Fe-rich precipitates in eutectic Al-Si die cast alloys, Scripta Materialia 54 (2006) 1543-1548.
DOI: 10.1016/j.scriptamat.2006.01.029
Google Scholar
[3]
J. Guo, Ying Liu, P. Fan, Haixia Qu, Tao Quan, The modification of electroless deposited Ni-P master alloy for hypereutectic Al-Si alloy, J. of Alloys and Comp. 495 (2010) 3005-3010.
DOI: 10.1016/j.jallcom.2010.02.012
Google Scholar
[4]
M. Zuo, X. Liu, Q. Sun, Effects of processing parameters on the refinement of primary Si in A390 alloys with a Al-Si-P master alloy J. of Mater. Sci. 44 (2009) 1952-(1958).
DOI: 10.1007/s10853-009-3287-0
Google Scholar
[5]
Q.C. Jiang, C.L. Xu, M. Lu, H.Y. Wang, Effect of new Al-P-Ti-TiC-Y modifier on primary Si in hypereutectic Al-Si alloys, Materials Letters 59 (2005) 624-628.
DOI: 10.1016/j.matlet.2004.10.042
Google Scholar
[6]
R. Cook, Modification of Al-Si alloys. London and Scandinavian Metall. Co. Limited, (1998).
Google Scholar
[7]
J.E. Hatch, Aluminum: Properties and Physical Metallurgy. American Society for Metals, Metals Park, Ohio, (1984).
Google Scholar
[8]
O. Uzun, T. Karaaslan, Hardness and microstructure characteristics of rapidly solidified Al-16 wt. %Si alloys, J. of All. and Comp. 376 (2004) 149-157.
DOI: 10.1016/j.jallcom.2004.01.017
Google Scholar
[9]
C. L Xu, Q.C. Jiang, Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Mat. Science and Eng. A 437 (2006) 451-455.
DOI: 10.1016/j.msea.2006.07.088
Google Scholar
[10]
J. Piątkowski, The effect of Al-17wt. %Si alloy melt overheating on solidification process and microstructure evaluation. Solid State Phenomena 176 (2011) 29-34.
DOI: 10.4028/www.scientific.net/ssp.176.29
Google Scholar
[11]
P. Li, V.I. Nikitin, E.G. Kandalova, Effect of melt overheating, cooling and solidification rates on Al–16wt. %Si alloy structure. Mat. Science and Eng. A 332, Issues 1-2 (2002) 371-374.
DOI: 10.1016/s0921-5093(01)01864-0
Google Scholar
[12]
J. Piątkowski, B. Gajdzik, T. Matuła, Crystallization and structure of cast A390. 0 alloy with melt overheating temperature. Metalurgija 51/3 (2012) 321-324.
Google Scholar
[13]
J. Piątkowski, Influence of overheating degree on material reliability of A390. 0 alloy. Solid State Phenomena 191 (2012) 23-28.
DOI: 10.4028/www.scientific.net/ssp.191.23
Google Scholar
[14]
H.S. Dai, X.F. Liu, Refinement performance and mechanism of an Al-50Si alloy. Mat. Charact. 59 (2008) 1559-1569.
Google Scholar
[15]
S. Roskosz, M. Staszewski, J. Cwajna, A complex procedure for describing porosity in precision cast elements of aircraft engines made of MAR-M 247 and MAR-M 509 superalloys, Mater. Charact. 56 (2006) 405-413.
DOI: 10.1016/j.matchar.2005.11.005
Google Scholar
[16]
J. Piątkowski, Physical and chemical phenomena affecting structure and technological stability of hypereutectic Al-Si alloys after overheating, Silesian Technical University, Gliwice (2013).
Google Scholar