Microstructure and Properties of a New Generation of TiAl Based Alloys

Article Preview

Abstract:

The paper characterized the phase composition, microstructure and selected mechanical properties at room temperature and at temperature corresponding to the expected operating conditions of a new generation of TiAl based alloys melted in a vacuum induction furnace in a special graphite crucibles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 229)

Pages:

125-130

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Bartolotta, J. Barrett, T. Kelly, R. Smashey, The Use of Cast Ti-48Al-2Cr-2Nb in Jet Engines, J. of Met. 5 (1997) 48-76.

DOI: 10.1007/bf02914685

Google Scholar

[2] H. Clemens, H. Kestler, Processing and Applications of Intermetallic γ-TiAl-Based Alloys, Adv. Eng. Mater. 9 (2000) 551-570.

DOI: 10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u

Google Scholar

[3] E. A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.

DOI: 10.1016/s0966-9795(00)00073-x

Google Scholar

[4] F. Appel, U. Brossmann et al., Recent Progress in the Development of Gamma Titanium Aluminide Alloys, Adv. Eng. Mater. 11 (2000) 699-719.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[5] X. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14 (2006) 1114-1122.

DOI: 10.1016/j.intermet.2005.10.019

Google Scholar

[6] W. Szkliniarz, TiAl Intermetallic Alloys (in Polish), Silesian University of Technology House of Publishing, Gliwice, (2007).

Google Scholar

[7] V. Güther, C. Rothe, S. Winter, H. Clemens, Metallurgy, Microstructure and Properties of Intermetallic TiAl Ingots, BHM 7 (2010) 325-329.

DOI: 10.1007/s00501-010-0580-9

Google Scholar

[8] A. Lasalmonie, Intermetallics: Why is it so difficult to introduce them in gas turbine engines?, Intermetallics 14 (2006) 1123-1129.

DOI: 10.1016/j.intermet.2006.01.064

Google Scholar

[9] D. Rugg, The Current Status of Titanium Alloy Use in Aero-Engines, Ti-2003 Science and Technology, WILEYVCH Verlag GmbH & Co. KGaA, (Weinheim 2004) 2727-2735.

Google Scholar

[10] G. Jarczyk, M. Blum, P. Busse, H. Scholz, H. -J. Laudenberg, K. Segtrop, New casting technology for low-priced titanium-aluminide automotive valves, Inż. Materiałowa 1 (2001) 46-49.

Google Scholar

[11] W. Szkliniarz, A. Szkliniarz, The Chemical Composition and Microstructure of Ti-47Al-2W-0. 5Si Alloy Melted in Ceramic Crucibles, Solid State Phenom. 191 (2012) 211-220.

DOI: 10.4028/www.scientific.net/ssp.191.211

Google Scholar

[12] W. Szkliniarz, A. Szkliniarz, Effect of boron addition on the microstructure of Ti-47Al-2W-0. 5Si alloy, Solid State Phenom. 212 (2014) 29-32.

DOI: 10.4028/www.scientific.net/ssp.212.29

Google Scholar

[13] J. P. Kuang, R. A. Harding, J. Campbell, Investigation into refractories as crucible and mould materials for melting and casting γ−TiAl alloys, Mater. Sci. Tech. 16 (2000) 1007-1015.

DOI: 10.1179/026708300101508964

Google Scholar

[14] A. Bartels, H. Clemens et al., Status of Alloy Development, Production Processes and Application of Gamma TiAl Structural Materials, Presentation MTU Aero Engines, Euromat 2007, Nürnberg, Germany.

Google Scholar

[15] T. Tetsui, T. Kobayashi, H. Harada, Achieving high strength and low cost for hot-forged TiAl based alloy containg b phase, Mater. Sci. Eng. A 552 (2012) 345-352.

DOI: 10.1016/j.msea.2012.05.050

Google Scholar

[16] H. Niu, Y. Chen, S. Xiao, L. Xu, Microstructure evolution and mechanical properties of a novel beta g-TiAl alloy, Intermetallics 31 (2012) 225-231.

DOI: 10.1016/j.intermet.2012.07.012

Google Scholar