[1]
P. Bartolotta, J. Barrett, T. Kelly, R. Smashey, The Use of Cast Ti-48Al-2Cr-2Nb in Jet Engines, J. of Met. 5 (1997) 48-76.
DOI: 10.1007/bf02914685
Google Scholar
[2]
H. Clemens, H. Kestler, Processing and Applications of Intermetallic γ-TiAl-Based Alloys, Adv. Eng. Mater. 9 (2000) 551-570.
DOI: 10.1002/1527-2648(200009)2:9<551::aid-adem551>3.0.co;2-u
Google Scholar
[3]
E. A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.
DOI: 10.1016/s0966-9795(00)00073-x
Google Scholar
[4]
F. Appel, U. Brossmann et al., Recent Progress in the Development of Gamma Titanium Aluminide Alloys, Adv. Eng. Mater. 11 (2000) 699-719.
DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j
Google Scholar
[5]
X. Wu, Review of alloy and process development of TiAl alloys, Intermetallics 14 (2006) 1114-1122.
DOI: 10.1016/j.intermet.2005.10.019
Google Scholar
[6]
W. Szkliniarz, TiAl Intermetallic Alloys (in Polish), Silesian University of Technology House of Publishing, Gliwice, (2007).
Google Scholar
[7]
V. Güther, C. Rothe, S. Winter, H. Clemens, Metallurgy, Microstructure and Properties of Intermetallic TiAl Ingots, BHM 7 (2010) 325-329.
DOI: 10.1007/s00501-010-0580-9
Google Scholar
[8]
A. Lasalmonie, Intermetallics: Why is it so difficult to introduce them in gas turbine engines?, Intermetallics 14 (2006) 1123-1129.
DOI: 10.1016/j.intermet.2006.01.064
Google Scholar
[9]
D. Rugg, The Current Status of Titanium Alloy Use in Aero-Engines, Ti-2003 Science and Technology, WILEYVCH Verlag GmbH & Co. KGaA, (Weinheim 2004) 2727-2735.
Google Scholar
[10]
G. Jarczyk, M. Blum, P. Busse, H. Scholz, H. -J. Laudenberg, K. Segtrop, New casting technology for low-priced titanium-aluminide automotive valves, Inż. Materiałowa 1 (2001) 46-49.
Google Scholar
[11]
W. Szkliniarz, A. Szkliniarz, The Chemical Composition and Microstructure of Ti-47Al-2W-0. 5Si Alloy Melted in Ceramic Crucibles, Solid State Phenom. 191 (2012) 211-220.
DOI: 10.4028/www.scientific.net/ssp.191.211
Google Scholar
[12]
W. Szkliniarz, A. Szkliniarz, Effect of boron addition on the microstructure of Ti-47Al-2W-0. 5Si alloy, Solid State Phenom. 212 (2014) 29-32.
DOI: 10.4028/www.scientific.net/ssp.212.29
Google Scholar
[13]
J. P. Kuang, R. A. Harding, J. Campbell, Investigation into refractories as crucible and mould materials for melting and casting γ−TiAl alloys, Mater. Sci. Tech. 16 (2000) 1007-1015.
DOI: 10.1179/026708300101508964
Google Scholar
[14]
A. Bartels, H. Clemens et al., Status of Alloy Development, Production Processes and Application of Gamma TiAl Structural Materials, Presentation MTU Aero Engines, Euromat 2007, Nürnberg, Germany.
Google Scholar
[15]
T. Tetsui, T. Kobayashi, H. Harada, Achieving high strength and low cost for hot-forged TiAl based alloy containg b phase, Mater. Sci. Eng. A 552 (2012) 345-352.
DOI: 10.1016/j.msea.2012.05.050
Google Scholar
[16]
H. Niu, Y. Chen, S. Xiao, L. Xu, Microstructure evolution and mechanical properties of a novel beta g-TiAl alloy, Intermetallics 31 (2012) 225-231.
DOI: 10.1016/j.intermet.2012.07.012
Google Scholar