Effect of Heat Treatment on the Microstructure and Properties of Ti-8Al-1Mo-1V Alloy with Carbon Addition

Article Preview

Abstract:

The paper concerns a new group of titanium alloys with improved properties caused by presence of carbon. The effect of heat treatment processes like annealing, solution treatment and precipitation hardening on the microstructure of Ti-8Al-1Mo-1V alloy with carbon content not exceeding the limit of solubility of carbon in the alpha phase (0.2 wt. %) were presented. The result of hardness test, static tensile test and creep test of research alloy in both annealing and hardening state was showed. The obtained results were referred to the same alloy without carbon. Investigated alloy is characterized by improved tensile strength with comparable plastic properties. The investigated alloy was characterized better creep resistance after duplex annealing treatment than after hardening.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 229)

Pages:

131-136

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Titanium and titanium alloys, Fundamentals and Applications, ed. by C. Leyens and M. Peters, WILEY-VCH GmbH & Co. KGaA, (2003).

Google Scholar

[2] Materials Properties Handbook: Titanium Alloys, ed. by G. Welsch, R. Boyer, E. W. Collins, ASM International, 1993, pp.377-408.

Google Scholar

[3] Information on http: /asm. matweb. com.

Google Scholar

[4] Fatigue Data Book: Light Structural Alloys, ASM International, USA 1995, pp.238-245.

Google Scholar

[5] H. G. Wang, F. Wang, Y. P. Song, Effect of heat treatment on microstructure and properties of Ti811 alloys, Appl. Mech. Mater. 117-119 (2012) 1032-1035.

DOI: 10.4028/www.scientific.net/amm.117-119.1032

Google Scholar

[6] O. P. Solonina, N. M. Ulyakova, Effect of carbon on the mechanical properties and structure of titanium alloys, Materials Science and Heat Treatment 4 (1974) 310-312.

DOI: 10.1007/bf00679223

Google Scholar

[7] H. R. Ogden, R. I. Jaffee, The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys, Titanium Metallurgical Laboratory Report No. 20, Ohio (1955) 1-101.

DOI: 10.2172/4370612

Google Scholar

[8] J. Grauman, S. Fox, S. Nyakana, Titanium alloy having improved corrosion resistance and strength, United States Patent US2006/035867 (2001).

Google Scholar

[9] Z. Q. Chen, Y. G. Li, M. H. Loretto, X. Wu, Role of alloying elements in microstructures of beta titanium alloys with carbon additions, Mater. Sci. Tech. 10 (2003) 1391-1398.

DOI: 10.1179/026708303225005999

Google Scholar

[10] Z. Q. Chen, Y. G. Li, D. Hu, M. H. Loretto, X. Wu, Effect of carbon additions on the microstructure and mechanical properties of Ti-15-3, J. Mater. Sci. Technol. 20 (2004) 343-349.

Google Scholar

[11] A. Szkliniarz, W. Szkliniarz: Assessment quality of Ti alloys melted in induction furnace with ceramic crucible, Solid State Phenom. 176 (2011) 139-148.

DOI: 10.4028/www.scientific.net/ssp.176.139

Google Scholar

[12] A. Szkliniarz, W. Szkliniarz, Effect of solution treatment on the microstructure of Ti-C alloys, Solid State Phenom. 212 (2014) 7-10.

DOI: 10.4028/www.scientific.net/ssp.212.21

Google Scholar

[13] G. Lütjering, J. C. Williams, A. Gysler, Microstructure and Mechanical Properties of Titanium Alloys, in: J.C.M. Li (Ed. ), Microstructure and Properties of Materials, World Scientific, Singapore, 1998, pp.1-77.

DOI: 10.1142/9789812793959_0001

Google Scholar

[14] Information on http: /www. RMITitanium. com.

Google Scholar

[15] Information on http: /www. titaniuminfogroup. com.

Google Scholar

[16] Information on http: /www. timet. com.

Google Scholar

[17] Titanium alloys handbook, R. A. Wood, R. J. Fawor, Metals and Ceramics Information Center Report No. MCIC HB-02, (1972).

Google Scholar