[1]
Y. Kalisky, Cr4+-doped crystals: their use as lasers and passive Q-switches, Prog. Quantum. Electron. 28 (2004) 249–303.
DOI: 10.1016/j.pquantelec.2004.09.001
Google Scholar
[2]
Y. Kalisky, O. Kalisky, M.R. Kokta, Passively Q-switched diode-pumped Nd: YAG and Nd: YVO4using (Cr4+, Ca2+): YAG and (Cr4+, Mg2+): YAG saturable absorbers, Opt. Mater. 30 (2008) 1775–1780.
DOI: 10.1016/j.optmat.2007.11.024
Google Scholar
[3]
J. Šulc, H. Jelínková, K. Nejezchleb, V. Škoda, Q-switched Nd: YAG/V: YAG monolith microlaser, Proc. of SPIE 5777 (2005) 378-383.
DOI: 10.1364/assp.2005.tub36
Google Scholar
[4]
H. Jelinková, J. Šulc, M. Němec, K. Nejezchleb, V. Skoda, Passively mode-locked Nd: YAP 1340-nm laser with V: YAG saturable absorber, Proc. of SPIE 5610 (2004) 292-296.
DOI: 10.1117/12.584429
Google Scholar
[5]
J. Młyńczak, K. Kopczyński, Z. Mierczyk, M. Malinowska, P. Osiwiański, Pulse generation at 1. 5 μm wavelength in new EAT14 glasses doped with Er3+ and Yb3+ ions, Opto-Ectron. Rev. 20 (2012) 14-17.
DOI: 10.2478/s11772-012-0003-4
Google Scholar
[6]
M. Camargo, R. Stultz, M. Birnbaum, M. Kokta, Co2+: YSGG saturable absorber Q-switch for infrared erbium lasers, Opt. Lett. 20 (1995) 339-341.
DOI: 10.1364/ol.20.000339
Google Scholar
[7]
A.G. Okhrimchuk, A. V. Shestakov, Absorption saturation mechanism for YAG: Cr4+ crystals, Phys. Rev. B: 61 (2000) 988–995.
Google Scholar
[8]
J.J. Degnan, Optimization of passively Q-switched lasers, IEEE J Quantum Electron. 31 (1995) 1890-(1901).
DOI: 10.1109/3.469267
Google Scholar
[9]
J. Mlynczak, K. Kopczynski, Z. Mierczyk, Optimization of passively repetitively Q-switched three-level lasers, IEEE J Quantum Electron. 44 (2008) 1152-1157.
DOI: 10.1109/jqe.2008.2003144
Google Scholar
[10]
S.V. Voitikov, A.A. Demidovich, V.A. Lisinetskii, V.A. Rantsevich, V.A. Orlovich, Determination of parameters of Cr: YAG crystalline absorbers from saturation of absorption, J. Applied Spectroscopy 79 (2013) 1-6.
DOI: 10.1007/s10812-013-9687-6
Google Scholar
[11]
J. Mlynczak, K. Kopczynski, Comparison of parameters of q-switching saturable absorbers estimated by different models and the impact of accuracy of input data on the results of the estimation, Opt. Mater. 36 (2014) 867-872.
DOI: 10.1016/j.optmat.2013.12.005
Google Scholar
[12]
Z. Mierczyk, Z. Frukacz, YAG: V3+ - new passive Q-switch for lasers generating radiation within near infrared range, Opto-Electron. Rev. 8, 67-74 (2000).
Google Scholar
[13]
L.M. Frantz, J.S. Nodvik, Theory of Pulse Propagation in a Laser Amplifier, J. Appl. Phys. 34 (1963) 2346-2349.
DOI: 10.1063/1.1702744
Google Scholar
[14]
P.V. Avizonis, R.L. Grotbeck, J. Experimental and Theoretical Ruby Laser Amplifier Dynamics, Appl. Phys. 37 (1966) 687-693.
DOI: 10.1063/1.1708238
Google Scholar
[15]
V.G. Shcherbitsky, S. Girard, M. Fromager, R. Moncorge, N.V. Kuleshov, V.I. Levchenko, V.N. Yakimovich, B. Ferrand, Accurate method for the measurement of absorption cross sections of solid-state saturable absorbers, Appl. Phys. B, 74 (2002).
DOI: 10.1007/s003400200809
Google Scholar
[16]
J. Šulc, P. Arátor, H. Jelínková, K. Nejezchleb, V. Škoda, M.R. Kokta, Solid state saturable absorbers for Q-switching at 1 and 1. 3 μm: Investigation and modeling, Proc. of SPIE 6871 (2008) 68712D.
DOI: 10.1117/12.760946
Google Scholar