[1]
P. Bordui, D. Jundt, E. Standifer, R. Norwood, R. Sawin, J. Galipeau, Chemically reduced lithium niobate single crystals: processing, properties and improved surface acoustic wave device fabrication and performance, J. Appl. Phys. 85 (1999).
DOI: 10.1063/1.369775
Google Scholar
[2]
T. Volk, M. Wöhlecke, Lithium Niobate. Defects, photorefraction and ferroelectric switching, Springer-Verlag, Berlin, (2008).
DOI: 10.1007/978-3-540-70766-0
Google Scholar
[3]
E.M. Miguel-Sans de, M. Carrascosa, L. Arizmendi, Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3: Fe, Phys. Rev. B. 65 (2002) 165101.
Google Scholar
[4]
J.M. Almeida, G. Boyle, A.P. Leite, R.M. De La Rue, C.N. Ironside, F. Caccavale, P. Chakraborti, I. Mansour, Chromium diffusion in lithium niobate for active optical waveguides, J. Appl. Phys. 78 (1995) 2193-2197.
DOI: 10.1063/1.360134
Google Scholar
[5]
J. Shi, H. Fritze, G. Borchardt, K. -D. Becker, Defect chemistry, redox kinetics, and chemical diffusion of lithium deficient lithium niobate, Phys. Chem. Chem. Phys. 13 (2011) 6925-6930.
DOI: 10.1039/c0cp02703k
Google Scholar
[6]
I.M. Solskii, D. Yu. Sugak, M.M. Vakiv, Growing large size complex oxide single crystals by Czochralski technique for electronic devices, Acta Physica Polonica A. 124 (2013) 314-320.
DOI: 10.12693/aphyspola.124.314
Google Scholar
[7]
D. Sugak, Ya. Zhydachevskii, Yu. Sugak, O. Buryy, S. Ubizskii, I. Solskii, M. Schrader, K. -D. Becker, In-situ investigation of optical absorption changes in LiNbO3 during reducing/oxidizing high-temperature treatments, J. Phys.: Cond. Matter. 19 (2007).
DOI: 10.1088/0953-8984/19/8/086211
Google Scholar
[8]
D. Yu. Sugak, I.M. Solskii, I.I. Syvorotka, M.M. Vakiv, Influence of thermochemical treatment on the optical properties of the lithium niobate single crystals, New Technologies. 35 (2012) 19-26, (in Ukrainian).
Google Scholar
[9]
D. Yu. Sugak, Yu.D. Sugak, T.O. Kret, M.V. Pashkovskii, B.M. Kopko, I.M. Solskii, I.I. Syvorotka, Properties of LiNbO3 annealing in reducing and neutral atmosphere, in: Book of Abstracts 16th International Seminar on Physics and Chemistry of Solids (ISPCS'10), Lviv, Ukraine, 2010, p.65.
Google Scholar
[10]
S. Bredikhin, S. Scharner, M. Klinger, V. Kveder, B. Red'kin, W. Weppner, Peculiarity of O and Li electrodiffusion into lithium niobate single crystals, Solid State Ionics. 135 (2000) 737–742.
DOI: 10.1016/s0167-2738(00)00400-8
Google Scholar
[11]
Fat Duen Ho, Electron energy levels in lithium niobate resulting from oxygen vacancies, Phys. Stat. Sol. (a). 86 (1981) 793-806.
DOI: 10.1002/pssa.2210660247
Google Scholar
[12]
O.F. Schirmer, M. Imlau, C. Merschjann, B. Schoke, Electron small polarons and bipolarons in LiNbO3, J. Phys.: Condens. Matter. 21 (2009) 123201.
DOI: 10.1088/0953-8984/21/12/123201
Google Scholar
[13]
A.V. Yatsenko, S.V. Yevdokimov, A.S. Pritulenko, D. Yu. Sugak, I.M. Solskii, The electrical properties of LiNbO3 crystals, reduced in hydrogen, Solid State Physics. 54 (2012) 79-83.
DOI: 10.1134/s1063783412110339
Google Scholar
[14]
J. Koppitz, O.F. Schirmer, A.I. Kuznetsov, Thermal dissociation of bipolarons in reduced undoped LiNbO3, Europhys. Lett. 4 (1987) 1055-1059.
DOI: 10.1209/0295-5075/4/9/017
Google Scholar