[1]
Special Metals Corporation, Inconel and Incoloy are trademarks of the Special Metals Corporation group of companies, Publication Number SMC-063, (2006).
Google Scholar
[2]
ASTM G-28-A, Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys, (2008).
DOI: 10.1520/g0028-02
Google Scholar
[3]
T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, M. Gupta, Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications, Opt. Laser. Eng. 51 (2012) 180-184.
DOI: 10.1016/j.optlaseng.2012.08.006
Google Scholar
[4]
H.N. Moosavy, M.R. Aboutalebi, S.H. Seyedein, A solidification model for prediction of castability in the precipitation-strengthened nickel-based superalloys, J. Mater. Process. Tech. 213 (2013) 1875-1884.
DOI: 10.1016/j.jmatprotec.2013.04.019
Google Scholar
[5]
R. Revie, H. Uhlig, Corrosion and corrosion control, John Wiley & Sons, New York, (2008).
Google Scholar
[6]
D.R. Muzyka, C.T. Sims, W.C. Hagel, The Metallurgy of Nickel-lron Alloys, in: C.T. Sims, W.C. Hagel (Eds. ), The Superalloys, Wiley, New York, 1972, pp.113-143.
Google Scholar
[7]
J.L. Barna, K.B. Rivers, Improving recovery boiler furnace reliability with advanced materials and application methods, Canadian Pulp and Paper Association January 25–29 (1999) 1-7.
Google Scholar
[8]
Lee Young-Ho, Kim I. -S, The effect of subsurface deformation on the wear behavior of steam generator tube materials, Wear 253 (2002) 438-447.
DOI: 10.1016/s0043-1648(02)00157-6
Google Scholar
[9]
OH. Madsen, New technologies for waste to energy plants, 4th International Symposium on waste treatment technologies, Sheffield, 2003, pp.1-12.
Google Scholar
[10]
M. Rozmus-Gornikowska, L. Cieniek, M. Blicharski, J. Kusinski, Microstructure and microsegregation of an Inconel 625 weld overlay produced on steel pipes by the cold metal transfer technique, Arch. Metall. Mater. 59 (2014) 1081-1084.
DOI: 10.2478/amm-2014-0185
Google Scholar
[11]
Marketing materials Fronius company, CMT: Cold Metal Transfer - MIG/MAG dip-transfer arc process.
Google Scholar
[12]
C.G. Pickin, S.W. Williams, M. Lunt, Characterisation of the cold metal transfer (CMT) process and ist application for low dilution cladding, J. Mater. Process. Tech. 211 (2011) 496-499.
DOI: 10.1016/j.jmatprotec.2010.11.005
Google Scholar
[13]
J. Bruckner, CMT method – revolution in welding technology, Przeglad Spawalnictwa 7-8 (2009) 24-27 (in Polish).
Google Scholar
[14]
J.N. DuPont, Solidification of an alloy 625 weld overlay, Metall. Mater. Trans. A 27A (1996) 3612-3620.
DOI: 10.1007/bf02595452
Google Scholar
[15]
J.N. DuPont, C.V. Robino, A.R. Marder, Solidification and weldability of Nb-bearing superalloys, Welding research supplement (1998) 417-431.
DOI: 10.2172/515586
Google Scholar
[16]
J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding metallurgy and weldability of nickel-base Alloys, John Wiley & Sons, (2009).
DOI: 10.1002/9780470500262
Google Scholar
[17]
M. Rozmus-Gornikowska, M. Blicharski, J. Kusinski, Influence of weld overlaying methods on microstructure and chemical composition of Inconel 625 boiler pipe coatings, Kovove Mater. 52 (2014) 1-7.
DOI: 10.4149/km_2014_3_141
Google Scholar
[18]
E.M. Zahrani, A.M. Alfantazi, Hot corrosion of Inconel 625 overlay weld cladding in smelting off-gas environment, Metall. Mater. Trans. A 44 (2013) 4671-4699.
DOI: 10.1007/s11661-013-1803-y
Google Scholar