Temperature Dependence of Electronic and Magnetic Properties of (DOEO)4[HgBr4]·TCE Single Crystals

Article Preview

Abstract:

The temperature dependence of electronic and magnetic properties of the organic charge-transfer salt (DOEO)4[HgBr4]·TCE was investigated using magnetometry. The magnetic susceptibility shows a maximum at 40 K followed by an onset of a pronounced increase at 70 K and a constant behavior above 120 K. Implications on the charge carrier density are discussed. Combining the magnetometry with resistivity and ESR measurements we propose a sequence of insulating, metallic and semiconducting behavior with increasing temperature. Our results indicate that (DOEO)4[HgBr4]·TCE is close to the boundary between an insulating and conducting ground state.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

173-176

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Williams, et al., Organic Superconductors (including Fullerenes): Synthesis, structure, properties and theory. Englewood Cliffs (New Jersey): Prentise Hall, (1992).

DOI: 10.1002/ange.19941061238

Google Scholar

[2] T. Ishiguro, K. Yamaji, G. Saito. Organic Superconductors. Springer, (1998).

Google Scholar

[3] N. Toyota, M. Lang, J. Müller, Low-dimensional Molecular Metals Springer, (2007).

Google Scholar

[4] R. Shibaeva, E. Yagubskii, Chem. Rev. 104 (2004) 5347.

Google Scholar

[5] E. B. Yagubskii, I. F. Shchegolev, V. N Laukhin, et al., JETP Letters, 40 (1984) 1201.

Google Scholar

[6] D. Smith, S. M. De Soto, C. P. Slichter, et al., Phys Rev. B 68 (2003) 024512.

Google Scholar

[7] T. Enoki, K. Tsujikawa, K. Suzuki, et al., Phys. Rev. B, 50 (1994) 16287.

Google Scholar

[8] Y. Nakazawa , S. Yamashita, Crystals 2 (2012) 741.

Google Scholar

[9] B. J. Powell, Ross H. McKenzie, Rep. Prog. Phys. 74 (2011) 056501.

Google Scholar

[10] S. Elsässer, D. Wu, M. Dressel, J. A. Schlueter Phys. Rev. B 86 (2012) 155150.

Google Scholar

[11] А.А. Bardin, А.I. Kotov, S.S. Khasanov, et al., Rus. J. Coord. Chem., 32 (2006) 88.

Google Scholar

[12] A. Lapinski, A.I. Kotov, Chem. Phys., 326 (2006) 551.

Google Scholar

[13] A. Lapinski, A. Gasecka, A. Graja, et al., Optical Materials, 34 (2012) 1651.

Google Scholar

[14] A. Chernenkaya, O.V. Koplak, A.I. Kotov et al., Physics of the Solid State 54 (2012) 2391.

Google Scholar

[15] R. B. Morgunov, A. I. Dmitriev, A. S. Chernenkaya, et al., JETP, 111 (2010) 857.

Google Scholar

[16] O. Kahn, Molecular Magnetism, VCH. Publishers Inc., New York, (1993).

Google Scholar

[17] F. Kagawa, K. Miyagawa, K. Kanoda, Nature Phys. 5 (2009) 880.

Google Scholar

[18] Y. Iwasa, K. Mizuhashi, T. Koda, Y. Tokura, G. Saito, Phys. Rev. B 49 (1993) 3580.

Google Scholar

[19] K. Miyagawa, K. Kanoda, A. Kawamoto, Chem. Rev. 104 (2004) 5635.

Google Scholar

[20] S. Diehl, T. Methfessel, J. Müller, et al., preprint available at arXiv: 1410. 5245.

Google Scholar

[21] S. Yasin et al. Eur. Phys. J. B 79, 383 (2011).

Google Scholar