Temperature Behavior of Magnetization in Multiphase Co-P Powders in Unsaturated Regime

Article Preview

Abstract:

In this paper we have proposed a modified expression for the fitting M(T) data in Co-P powders with nanocorundum and nanodiamond precipitates. The expression for M(T) takes into account the effects from both thermal magnetic excitations – Bloch’s T 3/2 law and temperature dependence of the magnetic anisotropy. The fitting parameters are spontaneous magnetization at absolute zero temperature, Bloch constant and order of magnetic anisotropy constant. The obtained Bloch constant is in good agreement with literature data. The order of magnetic anisotropy constant is found to be about 3 that is surprising result and supposedly comes from multiphase nature of the investigated Co-P powder.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

522-525

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Bloch, Zur Theorie des Ferromagnetismus, Zeitschrift Fur Phys. 61 (1930) 206–219.

Google Scholar

[2] B. Argyle, S. Charap, E. Pugh, Deviations from T32 Law for Magnetization of Ferrometals: Ni, Fe, and Fe+3% Si, Phys. Rev. 132 (1963) 2051–(2062).

DOI: 10.1103/physrev.132.2051

Google Scholar

[3] K. Hüller, The spin wave excitations and the temperature dependence of the magnetization in iron, cobalt, nickel and their alloys, J. Magn. Magn. Mater. 61 (1986) 347–358.

DOI: 10.1016/0304-8853(86)90048-x

Google Scholar

[4] R. Pauthenet, Experimental verification of spin-wave theory in high fields (invited), J. Appl. Phys. 53 (1982) 8187.

DOI: 10.1063/1.330287

Google Scholar

[5] H. -Q. Guo, K. Zaveta, B. -G. Shen, H. -Y. Yang, H. Kronmuller, Low-temperature magnetization and spin-wave excitation in nanocrystalline ferromagnets, J. Phys. Condens. Matter. 5 (1993) L437–L442.

DOI: 10.1088/0953-8984/5/36/002

Google Scholar

[6] E. Pulido, P. Crespo, a. Hernando, Low temperature magnetization behavior in nanocrystalline materials: spin waves, IEEE Trans. Magn. 28 (1992) 3189–3191.

DOI: 10.1109/20.179754

Google Scholar

[7] E. Della Torre, L. Bennett, R. Watson, Extension of the Bloch T3/2 Law to Magnetic Nanostructures: Bose-Einstein Condensation, Phys. Rev. Lett. 94 (2005) 147210.

DOI: 10.1103/physrevlett.94.147210

Google Scholar

[8] F. Keffer, Spin Waves, in: S. Flugge (Ed. ), Handb. Der Phys., Springer-Verlag, Berlin/Heidelberg, 1966: p.506.

Google Scholar

[9] L.A. Chekanova, E.A. Denisova, R.S. Iskhakov, Magnetic properties of electroless fine Co-P particles, IEEE Trans. Magn. 33 (1997) 3730–3732.

DOI: 10.1109/20.619553

Google Scholar

[10] L.A. Chekanova, E.A. Denisova, O.A. Goncharova, S. V Komogortsev, R.S. Iskhakov, Analysis of phase composition of Co-P alloy powders using magnetometric data, Phys. Met. Metallogr. 114 (2013) 122–128.

DOI: 10.1134/s0031918x1302004x

Google Scholar

[11] O.A. Goncharova, L.A. Chekanova, E.A. Denisova, S. V Komogortsev, R.S. Iskhakov, E. V Eremin, Ferromagnetic Co-P Powders with Nanodiamond and Corundum Precipitates, Solid State Phenom. 190 (2012) 470–473.

DOI: 10.4028/www.scientific.net/ssp.190.470

Google Scholar

[12] N.S. Akulov, Uber den Verlauf der Magnetisierungskurve in starken Feldern, Zeitschrift Fur Phys. Phys. 69 (1931) 822–831.

DOI: 10.1007/bf01339465

Google Scholar

[13] R.S. Iskhakov, S. V Komogortsev, Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets, Phys. Met. Metallogr. 112 (2011) 666–681.

DOI: 10.1134/s0031918x11070064

Google Scholar

[14] C. Zener, Classical theory of the temperature dependence of magnetic anisotropy energy, Phys. Rev. 96 (1954) 1335–1337.

DOI: 10.1103/physrev.96.1335

Google Scholar

[15] J. Wang, F. Zhao, W. Wu, G. -M. Zhao, Unusual temperature dependence of the magnetic anisotropy constant in barium ferrite BaFe12O19, J. Appl. Phys. 110 (2011) 096107.

DOI: 10.1063/1.3657851

Google Scholar

[16] S.I. Smirnov, S. V Komogortsev, Magnetization curves of randomly oriented ferromagnetic single-domain nanoparticles with combined symmetry of magnetic anisotropy, J. Magn. Magn. Mater. 320 (2008) 1123–1127.

DOI: 10.1016/j.jmmm.2007.10.029

Google Scholar

[17] N.A. Usov, J.M. Barandiarán, Magnetic nanoparticles with combined anisotropy, J. Appl. Phys. 112 (2012) 053915.

Google Scholar

[18] J. Geshev, A.D.C. Viegas, J.E. Schmidt, Negative remanent magnetization of fine particles with competing cubic and uniaxial anisotropies, J. Appl. Phys. 84 (1998) 1488.

DOI: 10.1063/1.368214

Google Scholar

[19] K. Hüller, G. Dietz, The temperature dependence of the magnetization of Fe-P, Co-P and Ni-P alloys, J. Magn. Magn. Mater. 50 (1985) 250–264.

DOI: 10.1016/0304-8853(85)90060-5

Google Scholar

[20] R.S. Iskhakov, G. V Popov, M.M. Karpenko, Low-temperature magnetization in amorphous and microcrystalline Co-P alloys, Fiz. Met. Met. 56 (1983) 85–93.

Google Scholar

[21] R.S. Iskhakov, G.I. Fish, V.K. Maltsev, R.G. Khlebopros, Determination of nearest neighbor symmetry in amorphous Co-P alloys, Fiz. Met. Met. 58 (1984) 1214–1215.

Google Scholar