[1]
F. Bloch, Zur Theorie des Ferromagnetismus, Zeitschrift Fur Phys. 61 (1930) 206–219.
Google Scholar
[2]
B. Argyle, S. Charap, E. Pugh, Deviations from T32 Law for Magnetization of Ferrometals: Ni, Fe, and Fe+3% Si, Phys. Rev. 132 (1963) 2051–(2062).
DOI: 10.1103/physrev.132.2051
Google Scholar
[3]
K. Hüller, The spin wave excitations and the temperature dependence of the magnetization in iron, cobalt, nickel and their alloys, J. Magn. Magn. Mater. 61 (1986) 347–358.
DOI: 10.1016/0304-8853(86)90048-x
Google Scholar
[4]
R. Pauthenet, Experimental verification of spin-wave theory in high fields (invited), J. Appl. Phys. 53 (1982) 8187.
DOI: 10.1063/1.330287
Google Scholar
[5]
H. -Q. Guo, K. Zaveta, B. -G. Shen, H. -Y. Yang, H. Kronmuller, Low-temperature magnetization and spin-wave excitation in nanocrystalline ferromagnets, J. Phys. Condens. Matter. 5 (1993) L437–L442.
DOI: 10.1088/0953-8984/5/36/002
Google Scholar
[6]
E. Pulido, P. Crespo, a. Hernando, Low temperature magnetization behavior in nanocrystalline materials: spin waves, IEEE Trans. Magn. 28 (1992) 3189–3191.
DOI: 10.1109/20.179754
Google Scholar
[7]
E. Della Torre, L. Bennett, R. Watson, Extension of the Bloch T3/2 Law to Magnetic Nanostructures: Bose-Einstein Condensation, Phys. Rev. Lett. 94 (2005) 147210.
DOI: 10.1103/physrevlett.94.147210
Google Scholar
[8]
F. Keffer, Spin Waves, in: S. Flugge (Ed. ), Handb. Der Phys., Springer-Verlag, Berlin/Heidelberg, 1966: p.506.
Google Scholar
[9]
L.A. Chekanova, E.A. Denisova, R.S. Iskhakov, Magnetic properties of electroless fine Co-P particles, IEEE Trans. Magn. 33 (1997) 3730–3732.
DOI: 10.1109/20.619553
Google Scholar
[10]
L.A. Chekanova, E.A. Denisova, O.A. Goncharova, S. V Komogortsev, R.S. Iskhakov, Analysis of phase composition of Co-P alloy powders using magnetometric data, Phys. Met. Metallogr. 114 (2013) 122–128.
DOI: 10.1134/s0031918x1302004x
Google Scholar
[11]
O.A. Goncharova, L.A. Chekanova, E.A. Denisova, S. V Komogortsev, R.S. Iskhakov, E. V Eremin, Ferromagnetic Co-P Powders with Nanodiamond and Corundum Precipitates, Solid State Phenom. 190 (2012) 470–473.
DOI: 10.4028/www.scientific.net/ssp.190.470
Google Scholar
[12]
N.S. Akulov, Uber den Verlauf der Magnetisierungskurve in starken Feldern, Zeitschrift Fur Phys. Phys. 69 (1931) 822–831.
DOI: 10.1007/bf01339465
Google Scholar
[13]
R.S. Iskhakov, S. V Komogortsev, Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets, Phys. Met. Metallogr. 112 (2011) 666–681.
DOI: 10.1134/s0031918x11070064
Google Scholar
[14]
C. Zener, Classical theory of the temperature dependence of magnetic anisotropy energy, Phys. Rev. 96 (1954) 1335–1337.
DOI: 10.1103/physrev.96.1335
Google Scholar
[15]
J. Wang, F. Zhao, W. Wu, G. -M. Zhao, Unusual temperature dependence of the magnetic anisotropy constant in barium ferrite BaFe12O19, J. Appl. Phys. 110 (2011) 096107.
DOI: 10.1063/1.3657851
Google Scholar
[16]
S.I. Smirnov, S. V Komogortsev, Magnetization curves of randomly oriented ferromagnetic single-domain nanoparticles with combined symmetry of magnetic anisotropy, J. Magn. Magn. Mater. 320 (2008) 1123–1127.
DOI: 10.1016/j.jmmm.2007.10.029
Google Scholar
[17]
N.A. Usov, J.M. Barandiarán, Magnetic nanoparticles with combined anisotropy, J. Appl. Phys. 112 (2012) 053915.
Google Scholar
[18]
J. Geshev, A.D.C. Viegas, J.E. Schmidt, Negative remanent magnetization of fine particles with competing cubic and uniaxial anisotropies, J. Appl. Phys. 84 (1998) 1488.
DOI: 10.1063/1.368214
Google Scholar
[19]
K. Hüller, G. Dietz, The temperature dependence of the magnetization of Fe-P, Co-P and Ni-P alloys, J. Magn. Magn. Mater. 50 (1985) 250–264.
DOI: 10.1016/0304-8853(85)90060-5
Google Scholar
[20]
R.S. Iskhakov, G. V Popov, M.M. Karpenko, Low-temperature magnetization in amorphous and microcrystalline Co-P alloys, Fiz. Met. Met. 56 (1983) 85–93.
Google Scholar
[21]
R.S. Iskhakov, G.I. Fish, V.K. Maltsev, R.G. Khlebopros, Determination of nearest neighbor symmetry in amorphous Co-P alloys, Fiz. Met. Met. 58 (1984) 1214–1215.
Google Scholar