Identification of Engine Operation States Using Advanced Signal Analysis Methods

Article Preview

Abstract:

The article provides a discussion concerning the potential for applying advanced methods of vibroacoustic signal processing for the purposes of identification of a combustion engine state. It contains example results of vibration measurements on the passenger car combustion engine in three directions. The research was conducted on stopping vehicle, for different pre-set values of the engine rotational speed. The results of preliminary tests focused on the potential use in the diagnostics of engine operation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 236)

Pages:

196-203

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Batko, Z. Dąbrowski, Z. Engel, J. Kiciński, Weyna S. Modern methods of examination of vibroacoustic processes. Radom, Wydawnictwo ITeE, (2005).

Google Scholar

[2] R. Burdzik, T. Węgrzyn, Ł. Konieczny, A. Lisiecki Research on influence of fatigue metal damage of the inner race of bearing on vibration in different frequencies. Archives of Materials and Metallurgy vol. 59 issue 4, (2014), pp.1275-1281.

DOI: 10.2478/amm-2014-0218

Google Scholar

[3] B. Oleksiak, M. Koziol, J. Wieczorek, Strength of briquettes made of cu concentrate and carbon-bearing materials. Metalurgija Vol. 54 Issue 1 (2015) pp.95-97.

Google Scholar

[4] P. Folega, G. Siwiec, Numerical analysis of selected materials for flexsplines Archives of metallurgy and materials. vol. 57 issue 1 (2012), pp.185-191.

DOI: 10.2478/v10172-012-0008-5

Google Scholar

[5] M. Siergiejczyk, A. Rosinski, Analysis of power supply maintenance in transport telematics system. Solid State Phenomena vol. 210 (2014), pp: 14-19.

DOI: 10.4028/www.scientific.net/ssp.210.14

Google Scholar

[6] D. Laskowski, P. Łubkowski, E. Pawlak, P. Stańczyk. Anthropo-technical systems reliability, Safety and Reliability, Methodology and Applications - Proceedings of the European Safety and Reliability Conference, ESREL 2014, (2015), pp.399-407.

DOI: 10.1201/b17399-61

Google Scholar

[7] M. Siergiejczyk, A. Rosinski, Reliability analysis of electronic protection systems using optical links. Advances in Intelligent and Soft Computing. Vol. 97 (2011), pp.193-203.

DOI: 10.1007/978-3-642-21393-9_15

Google Scholar

[8] J. Dziurdź, Transformation of nonstationary signals into Pseudostationary, signals for the needs of vehicle diagnostics, Acta Physica Polonica A, Vol. 118 no. 1, (2010), p.49–53.

DOI: 10.12693/aphyspola.118.49

Google Scholar

[9] T. Figlus, A. Wilk, H. Madej, B. Łazarz, Investigation of gearbox vibroactivity with theuse of vibration and acoustic pressure start-up characteristics. Archive of Mechanical Engineering Vol. 58 Issue 2 (2011), pp.209-221.

DOI: 10.2478/v10180-011-0015-5

Google Scholar

[10] A. Grządziela Modeling of propeller shaft dynamics at pulse load. Polish Maritime Researches, Vol. 15, Issue 4, (2008), p.52‑58.

DOI: 10.2478/v10012-007-0097-7

Google Scholar

[11] G. Grzeczka The analysis of possibility of using electromagnetic drive for autonomous biomimetic underwater vehicle. Solid State Phenomena, Vol. 196, (2013), pp.82-87.

DOI: 10.4028/www.scientific.net/ssp.196.82

Google Scholar

[12] R. Burdzik, Ł. Konieczny, Research on structure, propagation and exposure to general vibration in passenger car for different damping parameters. Journal of Vibroengineering vol. 15 no. 4, (2013) pp.1680-1688.

Google Scholar

[13] J. Merkisz, S. Tarkowski, Selected aspects of using deck recorders in automotive vehicles. Eksploatacja i Niezawodnosc - Maintenance and Reliability Vol. 2(50), (2011), pp.50-58.

Google Scholar

[14] R. Michalski S. Wierzbicki, An analysis of degradation of vehicles in operations. Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 1(37) (2008), pp.30-32.

Google Scholar

[15] J. Pankiewicz, P. Deuszkiewicz, J. Dziurdź, M. Zawisza Modeling of powertrain system dynamic behavior with torsional vibration damper. Advanced Materials Research Vol. 1036 (2014), pp.586-591.

DOI: 10.4028/www.scientific.net/amr.1036.586

Google Scholar

[16] J. Pankiewicz, W. Homik, Examinations of torsional vibration dampers used in reciprocating internal combustion engines. Polish Journal of Environmental Studies, Vol. 20, Issue 5A, (2011), pp.108-111.

Google Scholar

[17] M. Kłaczyński, T. Wszołek, Detection and classification of selected noise sources in long-term acoustic climate monitoring. Acta Physica Polonica A, 121 (1-A), (2012), p.179–182.

DOI: 10.12693/aphyspola.121.a-179

Google Scholar

[18] R. Zimroz, J. Urbanek, T. Barszcz, W. Bartelmus, F. Milioz, N. Martin, Measurement of instantaneous shaft speed by advanced vibtation signal processing - application to wind turbine gearbox. Metrology and Measurement Systems 18(4), (2011).

DOI: 10.2478/v10178-011-0066-4

Google Scholar

[19] A. Wilk, H. Madej, T. Figlus, Analysis of the possibility to reduce vibroactivity of the gearbox housing. Eksploatacja i Niezawodność – Maintenance and Reliability 2(50), (2011), pp.42-49.

Google Scholar

[20] R. Burdzik, Ł. Konieczny, P. Folęga Structural health monitoring of rotating machines in manufacturing processes by vibration methods. Trans Tech Publications, Advanced Materials Research, vol. 1036, (2014), pp.1662-8985.

DOI: 10.4028/www.scientific.net/amr.1036.642

Google Scholar

[21] R. Burdzik, Ł. Konieczny Application of vibroacoustic methods for monitoring and control of comfort and safety of passenger cars. Solid State Phenomena. vol. 210 (2014), pp.1012-0394.

DOI: 10.4028/www.scientific.net/ssp.210.20

Google Scholar

[22] P. Czech, G. Wojnar, R. Burdzik, Ł. Konieczny, J. Warczek, Application of the discrete wavelet transform and probabilistic neural networks in IC engine fault diagnostics. Journal of Vibroengineering vol. 16 no. 4, (2014), pp.1619-1639.

Google Scholar