[1]
Chow, L., et al., Growth of (100) oriented diamond thin films on ball structure diamond-like particles. Journal of materials research, 1992. 7(07): pp.1606-1609.
DOI: 10.1557/jmr.1992.1606
Google Scholar
[2]
Chow, L., et al., Fullerene formation during production of chemical vapor deposited diamond. Applied physics letters, 1995. 66(4): pp.430-432.
DOI: 10.1063/1.114046
Google Scholar
[3]
Zhou, D., et al., Control of diamond film microstructure by Ar additions to CH 4/H 2 microwave plasmas. Journal of Applied Physics, 1998. 84(4): p.1981-(1989).
DOI: 10.1063/1.368331
Google Scholar
[4]
Zhou, D., et al., Synthesis and electron field emission of nanocrystalline diamond thin films grown from N 2/CH 4 microwave plasmas. Journal of applied physics, 1997. 82(9): pp.4546-4550.
DOI: 10.1063/1.366190
Google Scholar
[5]
Geis, M.W., et al., A new surface electron-emission mechanism in diamond cathodes. Nature, 1998. 393(6684): pp.431-435.
DOI: 10.1038/30900
Google Scholar
[6]
Mosińska, L., et al., Diamond as a transducer material for the production of biosensors. Przemysl Chemiczny, 2013. 92(6): pp.919-923.
Google Scholar
[7]
Fabisiak, K., et al., The Undoped CVD Diamond Electrode: The Effect of Surface Pretreatment on its Electrochemical Properties. Advanced Engineering Materials, 2013. 15(10): pp.935-940.
DOI: 10.1002/adem.201200351
Google Scholar
[8]
Filik, J., Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like materials. Spectroscopy Europe, 2005. 17(5): p.10.
Google Scholar
[9]
Mosińska, L., et al., Effect of sp2 phase content on hydrophobicity of diamond layers. PRZEMYSŁ CHEMICZNY, 2014. 93(9): pp.1587-1590.
Google Scholar
[10]
Fabisiak, K., et al., The influence of working gas on CVD diamond quality. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012. 177(15): pp.1352-1357.
DOI: 10.1016/j.mseb.2011.12.013
Google Scholar
[11]
Mosinska, L., et al., Undoped CVD diamond films for electrochemical applications. Electrochimica Acta, 2013. 104: pp.481-486.
DOI: 10.1016/j.electacta.2013.03.111
Google Scholar
[12]
McNamara, K.M., et al., Evaluation of diamond films by nuclear magnetic resonance and Raman spectroscopy. Diamond and Related Materials, 1992. 1(12): pp.1145-1155.
DOI: 10.1016/0925-9635(92)90088-6
Google Scholar
[13]
Adamopoulos, G., et al., Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy. Journal of Applied Physics, 2004. 96(11): pp.6348-6352.
DOI: 10.1063/1.1811397
Google Scholar
[14]
Yoshikawa, M. Raman spectra of diamondlike amorphous carbon films. in Materials Science Forum. 1991. Trans Tech Publ.
DOI: 10.4028/www.scientific.net/msf.52-53.365
Google Scholar
[15]
Casiraghi, C., et al., Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diamond and Related Materials, 2005. 14(3–7): pp.1098-1102.
DOI: 10.1016/j.diamond.2004.10.030
Google Scholar
[16]
Ballutaud, D., et al., Sp3/sp2 character of the carbon and hydrogen configuration in micro- and nanocrystalline diamond. Diamond and Related Materials, 2008. 17(4–5): pp.451-456.
DOI: 10.1016/j.diamond.2007.10.004
Google Scholar