[1]
Makaruk, M. Miltner, M. Harasek, Membrane biogas upgrading processes for the production of natural gas substitute, Sep. Purif. Technol. 74 (2010) 83–92.
DOI: 10.1016/j.seppur.2010.05.010
Google Scholar
[2]
G.K. Kafle, S.H. Kim, Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products, Biores. Technol. 142 (2013) 553–561.
DOI: 10.1016/j.biortech.2013.05.018
Google Scholar
[3]
M. Börjesson, E.O. Ahlgren, Cost-effective biogas utilisation – A modelling assessment of gas infrastructural options in a regional energy system, Energy 48 (2012) 212–226.
DOI: 10.1016/j.energy.2012.06.058
Google Scholar
[4]
D.H. Kim, S.H. Hyun, Kinetics of thermophilic anaerobic digestion and effects of propionate on thermophilic anaerobic digestion, J. Environ. Sci. Eng., 6 (2004) 58–63.
Google Scholar
[5]
D. T. Sponza, H. Atala, Simultaneous phosphorus, nitrogen and dinitrotoluene removals in batch anaerobic/anoxic/aerobic sequentials. Process. Biochem. 40 (2005) 25–34.
DOI: 10.1016/j.procbio.2003.11.029
Google Scholar
[6]
H.U. Cho, S.K. Park, J.H. Ha, J.M. Park, An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation, J. Environ. Manag. 129 (2013).
DOI: 10.1016/j.jenvman.2013.07.009
Google Scholar
[7]
A.O. Wagner, T. Schwarzenauer, P. Illmer, Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture, J. Environ. Manag. 129 (2013) 357–360.
DOI: 10.1016/j.jenvman.2013.07.030
Google Scholar
[8]
R. Cui, D. Jahng, Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge, Biotech. Lett. 28 (2006) 531–538.
DOI: 10.1007/s10529-006-0012-9
Google Scholar
[9]
C.H. Ting, D.J. Lee, Production of hydrogen and methane from wastewater sludge using anaerobic fermentation, Intern. J. Hydr. Energy 32 (2007) 677–682.
DOI: 10.1016/j.ijhydene.2006.06.063
Google Scholar
[10]
A. Donoso-Bravo, S. Perez-Elvira, E. Aymerich, F. Fdz-Polanco, Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge, Biores. Technol. 102 (2011) 660–666.
DOI: 10.1016/j.biortech.2010.08.035
Google Scholar
[11]
Y. Lin, D. Wang, S. Wu, C. Wang, Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge, J. Hazard. Mater. 170 (2009) 366–373.
DOI: 10.1016/j.jhazmat.2009.04.086
Google Scholar
[12]
Q. Yu et al., Influence of microwave irradiation on sludge dewaterability, Chem. Eng. J. 155 (2009) 88–93.
Google Scholar
[13]
S.E. Vigueras-Carmona et al., Effect of thermal alkaline pretreatment on the anaerobic digestion of wasted activated sludge, Wat. Sci. Tech. 64 (2011) 953–959.
DOI: 10.2166/wst.2011.726
Google Scholar
[14]
M. Krzemieniewski, M. Dębowski, W. Janczukowicz, J. Pesta, Effect of sludge conditioning by chemical methods with magnetic field application. Pol. J. Env. Stud. 12 (2003) 595–605.
Google Scholar
[15]
M. Krzemieniewski, M. Dębowski, W. Janczukowicz, J. Pesta, Changes of tap water and fish – pond water properties by magnetic treatment. Pol. J. Nat. Sc. 14 (2003) 459–474.
Google Scholar
[16]
M. Krzemieniewski, M. Dębowski, W. Janczukowicz, J. Pesta, Effect of the constant magnetic field on composition dairy wastewater and municipal sewage. Pol. J. Env. Stud. 13 (2004) 45–53.
Google Scholar
[17]
H. Yavauz, S. Celebi, Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme Microb. Tech. 26 (2000) 22–27.
Google Scholar
[18]
H. Chen, X. Li, Effect of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain fatty acids by activated sludge. Biores. Technol. 99 (2008) 5538–5544.
DOI: 10.1016/j.biortech.2007.10.047
Google Scholar
[19]
S. Hattori, M. Watanabe, H. Osono, H. Togii, K. Sasaki, Effects of an external magnetic field on the flock size and sedimentation of activated sludge. World J. Microbiol. Biotechnol. 17 (2001) 833–838.
DOI: 10.1023/a:1013811114017
Google Scholar
[20]
Y.B. Xu, S.Y. Sun, Effect of stable weak magnetic field on Cr(VI) bio-removal in anaerobic SBR system. Biodegradation 19 (2008) 455–462.
DOI: 10.1007/s10532-007-9151-5
Google Scholar