Characterization of Microstructure of Fibrous Composites Using High-Order Correlation Functions

Article Preview

Abstract:

This paper introduces the methodology of microstructural characterization of fibrous composites using correlation functions of different orders. Its implementation is demonstrated on several examples of modeled representative volume elements. The ways of obtaining values of the functions as well as the procedure of their approximation are presented. The possible applications of such methodology are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 243)

Pages:

121-129

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Buryachenko V., Micromechanics of heterogeneous materials, 1st ed., Springer, New York, (2007).

Google Scholar

[2] Kanouté P., Boso D.P., Chaboche J.L., Schrefler B.A., Multiscale Methods for Composites: A Review, Arch. Comput. Methods. Eng. 16 (2009) 31-75.

DOI: 10.1007/s11831-008-9028-8

Google Scholar

[3] Torquato S., Random Heterogenous Materials. Microstructure And Macroscopic Properties, Springer-Verlag, (2001).

Google Scholar

[4] Torquato S., Optimal design of heterogeneous materials, Ann. Rev. of Mat. Research 40 (2010) 101–29.

Google Scholar

[5] Liu K.C., Ghoshal A., Validity of random microstructures simulation in fiber-reinforced composite materials, Composites Part B: Engineering 57 (2014) 56-70.

DOI: 10.1016/j.compositesb.2013.08.006

Google Scholar

[6] Liu Yu, Steven Greene M., Chen Wei et al., Computational microstructure characterization and reconstruction for stochastic multiscale material design, Computer-Aided Design 45 (2013) 65-76.

DOI: 10.1016/j.cad.2012.03.007

Google Scholar

[7] Feng J.W., Li C.F., Cen S., Owen D.R.J., Statistical reconstruction of two-phase random media, Computers and Structures 137 (2014) 78-92.

DOI: 10.1016/j.compstruc.2013.03.019

Google Scholar

[8] Abdin Y., Lomov S.V., Jain A., van Lenthe G.H., Verpoest I., Geometrical characterization and micro-structural modeling of short steel fiber composites, Composites Part A: Applied Science and Manufacturing 67 (2014) 171-180.

DOI: 10.1016/j.compositesa.2014.08.025

Google Scholar

[9] Swaminathan S., Ghosh S., Pagano N.J., Statistically equivalent representative volume elements for unidirectional composite microstructures: Part I – without damage, J. Compos. Mater. 40 (2006) 583-604.

DOI: 10.1177/0021998305055273

Google Scholar

[10] Trias D. et al., A two-scale method for matrix cracking probability in fibre reinforced composites based on a statistical representative volume element, Compos. Sci. Technol. 66 (2006) 1766–77.

DOI: 10.1016/j.compscitech.2005.10.030

Google Scholar

[11] Romanov V., Lomov S.V., Swolfs Y., Orlova S., Gorbatikh L., Verpoest I., Statistical analysis of real and simulated fibre arrangements in unidirectional composites, Comp. Sci. and Tech. 87 (2013) 126-134.

DOI: 10.1016/j.compscitech.2013.07.030

Google Scholar

[12] Zeman J., Šejnoha M., Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix, J. Mech. Phys. Solids 49 (2001) 69–90.

DOI: 10.1016/s0022-5096(00)00027-2

Google Scholar

[13] Hinrichsen E.L., Feder J., Jossang T., Geometry of random sequential adsorption, J. Statist. Phys. 44 (1986) 793-827.

DOI: 10.1007/bf01011908

Google Scholar

[14] Tashkinov M.A., Wildemann V.E., Mikhailova N.V., Method of successive approximations in stochastic elastic boundary value problem for structurally heterogenous materials, Comp. Mat. Sci. 52 (2012) 101-106.

DOI: 10.1016/j.commatsci.2011.04.025

Google Scholar

[15] Tashkinov M., Statistical characteristics of structural stochastic stress and strain fields in polydisperse heterogeneous solid media, Comp. Mat. Sci. 94 (2014) 44–50.

DOI: 10.1016/j.commatsci.2014.01.050

Google Scholar