Effect of Boundary Conditions on the Hydroelastic Vibrations of Two Parallel Plates

Article Preview

Abstract:

This paper presents the results of numerical solution of the 3D spectral problem on natural vibrations of two parallel identical rectangular plates interacting with a quiescent fluid confined between them. Based on the developed finite element algorithm several examples have been considered to analyze the influence of the fluid height and boundary conditions on the natural frequencies and vibration modes.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 243)

Pages:

51-58

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Haddara M.R., Cao S., A study of the dynamic response of submerged rectangular flat plates, Mar. Struct. 9 (1996) 913–933.

DOI: 10.1016/0951-8339(96)00006-8

Google Scholar

[2] Fu Y., Price W.G., Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid, J. Sound Vib. 118 (1987) 495–513.

DOI: 10.1016/0022-460x(87)90366-x

Google Scholar

[3] Liang C. -C., Liao C. -C., Tai Y. -S., Lai W. -H., The free vibration analysis of submerged cantilever plates, Ocean Eng. 28 (2001) 1225–1245.

DOI: 10.1016/s0029-8018(00)00045-7

Google Scholar

[4] Ergin A., Uğurlu B., Linear vibration analysis of cantilever plates partially submerged in fluid, J. Fluids Struct. 17 (2003) 927–939.

DOI: 10.1016/s0889-9746(03)00050-1

Google Scholar

[5] Ohkusu M., Namba Y., Hydroelastic analysis of a large floating structure, J. Fluids Struct. 19 (2004) 543–555.

DOI: 10.1016/j.jfluidstructs.2004.02.002

Google Scholar

[6] Kerboua Y., Lakis A.A., Thomas M., Marcouiller L., Vibration analysis of rectangular plates coupled with fluid, Appl. Math. Model. 32 (2008) 2570–2586.

DOI: 10.1016/j.apm.2007.09.004

Google Scholar

[7] Jeong K. -H., Yoob G. -H., Leeb S. -C., Hydroelastic vibration of two identical rectangular plates, J. Sound Vib. 272 (2004) 539–555.

DOI: 10.1016/s0022-460x(03)00383-3

Google Scholar

[8] Jeong K. -H., Kang H. -S., Free vibration of multiple rectangular plates coupled with a liquid, Int. J. Mech. Sci. 74 (2013) 161–172.

Google Scholar

[9] Powell J.H., Roberts J.H.T., On the frequency of vibration of circular diaphragms, Proc. Phys. Soc. Lond. 35 (1923) 170–182.

Google Scholar

[10] Lindholm U.S., Kana D.D., Chu W.H., Abramson H.N., Elastic vibration characteristics of cantilever plates in water, J. Ship Res. 9 (1965) 11–22.

DOI: 10.5957/jsr.1965.9.2.11

Google Scholar

[11] Fletcher K., Computational Techniques for Fluid Dynamics, vol. 2, Springer-Verlag, Berlin, (1991).

Google Scholar

[12] Reddy J.N., An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford, (2004).

Google Scholar

[13] Zienkiewicz O.C., Finite Element Method in Engineering Science, McGraw-Hill, London, (1972).

Google Scholar

[14] Lehoucq R.B., Sorensen D.C., Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17 (1996) 789–821.

DOI: 10.1137/s0895479895281484

Google Scholar