Structure and Optical Properties of Porous Silicon Formed on Silicon Substrates Treated with Compression Plasma Flow

Article Preview

Abstract:

Porous silicon layers were formed on the silicon substrates treated with compression plasma flow. Pores density and lateral size on substrates treated with plasma is by 25% more than that on untreated substrates. The intensity of the PL of the PS layers, formed on the plasma treated substrates (PT PS), is twice more than that of the PS layers, formed on untreated substrates. Three month exposure of normal PS and PT PS layers to the air leads to the PL intensity increase by 3 and 5.7 times, respectively, as well as to the peak position shifting towards long wavelength region by 3.1 nm, in the case of PT PS layer. The PL intensity increase is attributable to the reduction of the dangling bond density as a result of passivation by oxygen.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] V. Schmidt, J.V. Wittemann, S. Senz, and U. Go¨sele, Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties, Advanced Materials, 21 (2009) 2681–2702.

DOI: 10.1002/adma.200803754

Google Scholar

[2] M.V. Wolkin, J. Jorne, P.M. Fauchet, Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Physical Review Letters, 82 (1999) 197-200.

DOI: 10.1103/physrevlett.82.197

Google Scholar

[3] J. S. Biteen, N. S. Lewis, and H. A. Atwater, Spectral tuning of plasmon-enhanced silicon quantum dot luminescence, Applied Physics Letters, 88 (2006) 131109 (3).

DOI: 10.1063/1.2191411

Google Scholar

[4] V. V. Uglov *, V. M. Anishchik1 , V. V. Astashynski, Formation of Submicron Cylindrical Structures at Silicon Surface Exposed to a Compression Plasma Flow, JETP Letters, 74 (2001) 213-215.

DOI: 10.1134/1.1413553

Google Scholar

[5] A. G. Cullis, L.T. Canham, Visible light emission due to quantum size effects on highly porous crystalline silicon, Nature 353 (1991) 335-338.

DOI: 10.1038/353335a0

Google Scholar

[6] M. Guendouz, P. Joubert , M. Sarret, Effect of crystallographic directions on porous silicon formation on patterned substrates, Mater Sci Eng: B 69 (2000) 43–47.

DOI: 10.1016/s0921-5107(99)00263-9

Google Scholar

[7] F. A. Harraz, S.E. Sheikh, T. Sakka, Y.H. Ogata, Cylindrical pore arrays in silicon withintermediate nano-sizes: a template for nanofabrication and multilayer applications, Electrochim Acta, 53 (2008) 6444–6451.

DOI: 10.1016/j.electacta.2008.04.045

Google Scholar

[8] M. Christophersen, J. Carstensen, H. Föll, Crystal orientation dependence of macroporeformation in p-type silicon using organic electrolytes, Phys Status Solidi A, 182 (2000) 103–107.

DOI: 10.1002/1521-396x(200011)182:1<103::aid-pssa103>3.0.co;2-n

Google Scholar

[9] M. Christophersen, J. Carstensen, Feuerhake A, H. Föll, Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si, Mat. Sci. Eng.: B, 69 (2000) 194–198.

DOI: 10.1016/s0921-5107(99)00262-7

Google Scholar

[10] V.V. Uglov , V.M. Anishchik , V.V. Astashynski , V.M. Astashynski , S.I. Ananin , V.V. Askerko , E.A. Kostyukevich , A.M. Kuz'mitski , N.T. Kvasov , A.L. Danilyuk, The effect of dense compression plasma flow on silicon surface morphology, Surface and Coatings Technology, 158 – 159, 2002, 273–276.

DOI: 10.1016/s0257-8972(02)00182-2

Google Scholar

[11] J. Puri, V. M. Astashynskic, I. P. Dojcinovic, M. M. Kuraicaa, Creation of silicon submicron structures by compression plasma flow action, 73 (2004) 561–566.

Google Scholar

[12] C. Bulutay, S. Ossicini, Electronic and optical properties of silicon nanocrystals, in: L. Pavesi, R. Turan (Eds. ), Silicon nanocrystals: fundamentals, synthesis and applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinhein, 2010, Ch. 2, pp.5-41.

DOI: 10.1002/9783527629954.ch2

Google Scholar

[13] V.G. Golubev, A.V. Zherzdev, G.K. Moroz, A.V. Patsekin, D.T. Yan, Photoinduced strong luminescence enhancement from anodically oxidized porous silicon, Physics and technics of semiconductors, 30 (1996) 852-863.

Google Scholar

[14] R.L. Smith, S.D. Collins, Porous Silicon Formation Mechanism, J. Appl. Phys. 71 (1992) R1-R22.

Google Scholar