[1]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: a spin-based electronics vision for the future. Science, 294 (2001) 1488-1495.
DOI: 10.1126/science.1065389
Google Scholar
[2]
G. Zorpette, The quest for the SPIN transistor. Spectrum, IEEE, 38 (2001) 30-35.
Google Scholar
[3]
G. Schmidt, TOPICAL REVIEW: Concepts for spin injection into semiconductors--a review. Journal of Physics D Applied Physics, 38 (2005) R107–R122.
DOI: 10.1088/0022-3727/38/7/r01
Google Scholar
[4]
D. D. Awschalom, M. E. Flatté, Challenges for semiconductor spintronics. Nature Physics, 3 (2007) 153-159.
DOI: 10.1038/nphys551
Google Scholar
[5]
R. Jansen, Silicon spintronics. Nature Materials, 11 (2012) 400-408.
Google Scholar
[6]
A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 47 (2014) 193001 (40 pp).
DOI: 10.1088/0022-3727/47/19/193001
Google Scholar
[7]
I. Žutić, J. Fabian, S. D. Sarma, Spintronics: Fundamentals and applications. Reviews of modern physics, 76 (2004) 323- 410.
DOI: 10.1103/revmodphys.76.323
Google Scholar
[8]
A. Fert, H. Jaffres, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Physical Review B, 64 (2001) 184420 (9 pp).
Google Scholar
[9]
K. Ando, Dynamical generation of spin currents. Semiconductor Science and Technology, 29 (2014) 043002 (13 pp).
DOI: 10.1088/0268-1242/29/4/043002
Google Scholar
[10]
R. Jansen, A. M. Deac, H. Saito, S. Yuasa, Thermal spin current and magnetothermopower by Seebeck spin tunneling. Physical Review B, 85 (2012) 094401 (8 pp).
DOI: 10.1103/physrevb.85.094401
Google Scholar
[11]
A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, A. Petrou, Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Applied Physics Letters, 80 (2002)1240-1242.
DOI: 10.1063/1.1449530
Google Scholar
[12]
M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. De Groot, Half-metallic ferromagnets: From band structure to many-body effects. Reviews of Modern Physics, 80 (2008) 315-378.
DOI: 10.1103/revmodphys.80.315
Google Scholar
[13]
J. Cibert, D. Scalbert, Diluted magnetic semiconductors: Basic physics and optical properties. In Spin Physics in Semiconductors. Springer Berlin Heidelberg. (2008) pp.389-431.
DOI: 10.1007/978-3-540-78820-1_13
Google Scholar
[14]
M. Müller, Electronic Structure of Ferromagnet Insulator Interfaces: Fe/MgO and Co/MgO (Duisburg-Essen Univ., Diss., 2007), In: Matter and Materials, Forschungszentrum Jülich, Vol. 40 (2007) pp.1-107.
Google Scholar
[15]
R. M. Bozorth, Atomic moments of ferromagnetic alloys. Physical Review, 79 (1950) p.887.
DOI: 10.1103/physrev.79.887
Google Scholar
[16]
G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, B. J. Van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Physical Review B, 62 (2000) R4790- R4793.
DOI: 10.1103/physrevb.62.r4790
Google Scholar
[17]
E. I. Rashba, Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Physical Review B, 62 (2000) R16267- R16270.
DOI: 10.1103/physrevb.62.r16267
Google Scholar
[18]
S. D. Sarma, J. Fabian, X. Hu, I. Žutić, Theoretical perspectives on spintronics and spin-polarized transport. Magnetics, IEEE Transactions on, 36 (2000) 2821-2826.
DOI: 10.1109/20.908600
Google Scholar
[19]
G. X. Miao, M. Münzenberg, J. S. Moodera, Tunneling path toward spintronics. Reports on Progress in Physics, 74 (2011) 036501 (19pp).
DOI: 10.1088/0034-4885/74/3/036501
Google Scholar
[20]
J. G. J. Zhu, C. Park, Magnetic tunnel junctions. Materials Today, 9 (2006) 36-45.
Google Scholar
[21]
T. Miyazaki, T. Yaoi, S. Ishio, Large magnetoresistance effect in 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junction. Journal of magnetism and magnetic materials, 98 (1991) L7-L9.
DOI: 10.1016/0304-8853(91)90417-9
Google Scholar
[22]
H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Schönherr, K. H. Ploog, Room-temperature spin injection from Fe into GaAs. Physical Review Letters, 87 (2001) 016601 (4 pp).
DOI: 10.1103/physrevlett.87.016601
Google Scholar
[23]
A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Efficient electrical spin injection from a magnetic metal tunnel barrier contact into a semiconductor, Appl. Phys. Lett. 80 (2002) 1240–1242.
DOI: 10.1063/1.1449530
Google Scholar
[24]
P. Van Dorpe, V. F. Motsnyi, M. Nijboer, E. Goovaerts, V. I. Safarov, J. Das, W. Van Roy, G. Borghs, and J. De Boeck, Highly efficient room temperature spin injection in a metal-insulator-semiconductor light-emitting diode. Japanese journal of applied physics, 42 (2003).
DOI: 10.1143/jjap.42.l502
Google Scholar
[25]
V. F. Motsnyi, P. Van Dorpe, W. Van Roy, E. Goovaerts, V. I. Safarov, G. Borghs, and J. De Boeck, Optical investigation of electrical spin injection into semiconductors. Physical Review B, 68 (2003) 245319 (13 pp).
DOI: 10.1103/physrevb.68.245319
Google Scholar
[26]
Van't Erve, O. M. J., Kioseoglou, G., Hanbicki, A. T., Li, C. H., Jonker, B. T., Mallory, M. Yasar, and A. Petrou, Comparison of Fe/Schottky and Fe/Al2O3 tunnel barrier contacts for electrical spin injection into GaAs. Applied Physics Letters, 84 (2004).
DOI: 10.1063/1.1758305
Google Scholar
[27]
Z. G. Yu, M. E. Flatté, Spin diffusion and injection in semiconductor structures: Electric field effects. Physical Review B, 66 (2002) 235302 (14 pp).
DOI: 10.1103/physrevb.66.235302
Google Scholar
[28]
J. D. Albrecht, D. L. Smith, Spin-polarized electron transport at ferromagnet / semiconductor Schottky contacts. Physical Review B, 68 (2003) 035340 (14 pp).
DOI: 10.1103/physrevb.68.035340
Google Scholar
[29]
V. V. Osipov, A. M. Bratkovsky, Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier. Physical Review B, 70 (2004) 205312 (6 pp).
DOI: 10.1103/physrevb.70.205312
Google Scholar
[30]
S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S. H. Yang, Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nature materials, 3 (2004) 862-867.
DOI: 10.1038/nmat1256
Google Scholar
[31]
X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, S. S. P. Parkin, Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO (100). Physical Review Letters, 94 (2005) 056601 (4 pp).
DOI: 10.1103/physrevlett.94.056601
Google Scholar
[32]
B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, C. H. Li, P. E. Thompson, Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Physics, 3 (2007) 542-546.
DOI: 10.1038/nphys673
Google Scholar
[33]
S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, R. Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature, 462 (2009) 491-494.
DOI: 10.1038/nature08570
Google Scholar
[34]
Y. Saito, T. Inokuchi, M. Ishikawa, H. Sugiyama, T. Marukame, T. Tanamoto, Spin-based MOSFET and its applications. Journal of the Electrochemical Society, 158 (2011) H1068-H1076.
DOI: 10.1149/1.3623420
Google Scholar
[35]
Y. Saito, T. Marukame, T. Inokuchi, M. Ishikawa, H. Sugiyama, T. Tanamoto, Spin injection, transport, and read/write operation in spin-based MOSFET. Thin Solid Films, 519 (2011) 8266-8273.
DOI: 10.1016/j.tsf.2011.03.073
Google Scholar
[36]
S. Sugahara, M. Tanaka, A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Applied Physics Letters, 84 (2004) 2307-2309.
DOI: 10.1063/1.1689403
Google Scholar
[37]
S. Sugahara, Spin metal-oxide-semiconductor field-effect transistors (spin MOSFETs) for integrated spin electronics. IEE Proceedings-Circuits, Devices and Systems, 152 (2005) 355-365.
DOI: 10.1049/ip-cds:20045196
Google Scholar
[38]
T. Sasaki, Y. Ando, M. Kameno, T. Tahara, H. Koike, T. Oikawa, M. Shiraishi, Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature. Physical Review Applied, 2 (2014) 034005 (6 pp).
DOI: 10.1103/physrevapplied.9.039901
Google Scholar
[39]
J. G. Alzate, P. K. Amiri, K. L. Wang, Magnetic Tunnel Junctions and Their Applications in Nonvolatile Circuits. In: Handbook of Spintronics. (2015), pp.1-36.
DOI: 10.1007/978-94-007-7604-3_42-1
Google Scholar
[40]
W. H. Butler, X. G. Zhang, X. Wang, J. van Ek, J. M. MacLaren, Electronic structure of FM| semiconductor| FM spin tunneling structures. Journal of applied Physics, 81 (1997) 5518-5520.
DOI: 10.1063/1.364587
Google Scholar
[41]
E. Y. Tsymbal, O. N. Mryasov, P. R. LeClair, Spin-dependent tunnelling in magnetic tunnel junctions. Journal of Physics: Condensed Matter, 15(2003) R109-R142.
DOI: 10.1088/0953-8984/15/4/201
Google Scholar
[42]
E. Y. Tsymbal, D. G. Pettifor, Modelling of spin-polarized electron tunnelling from 3d ferromagnets. Journal of Physics: Condensed Matter, 9 (1997) L411-L417.
DOI: 10.1088/0953-8984/9/30/002
Google Scholar
[43]
E. Y. Tsymbal, A. Sokolov, I. F. Sabirianov, B. Doudin, Resonant inversion of tunneling magnetoresistance. Physical review letters, 90 (2003) 186602 (4 pp).
DOI: 10.1103/physrevlett.90.186602
Google Scholar
[44]
L. Sheng, D. Y. Xing, D. N. Sheng, Theory of impurity resonant tunnel magnetoresistance. Physical Review B, 69 (2004) 132414 (4 pp).
DOI: 10.1103/physrevb.69.132414
Google Scholar
[45]
E. Y. Tsymbal, D. G. Pettifor, Spin-polarized electron tunneling across a disordered insulator. Physical Review B, 58 (1998) 432 - 437.
DOI: 10.1103/physrevb.58.432
Google Scholar
[46]
E. Y. Tsymbal, D. G. Pettifor, Importance of resonant effects in spin-polarized electron tunneling. Journal of magnetism and magnetic materials, 198 (1999) 146-148.
DOI: 10.1016/s0304-8853(98)01057-9
Google Scholar
[47]
E. Y. Tsymbal, K. D. Belashchenko, J. P. Velev, S. S. Jaswal, M. Van Schilfgaarde, Van Schilfgaarde, I. I. Van Schilfgaarde, D. A. Stewart, Interface effects in spin-dependent tunneling. Progress in materials science, 52 (2007) 401-420.
DOI: 10.1016/j.pmatsci.2006.10.009
Google Scholar
[48]
E. Y. Tsymbal, K. D. Belashchenko, Role of interface bonding in spin-dependent tunneling. Journal of applied physics, 97 (2005) 10C910 (6 pp).
DOI: 10.1063/1.1851415
Google Scholar
[49]
J. P. Velev, M. Y. Zhuravlev, K. D. Belashchenko, S. S. Jaswal, E. Y. Tsymbal, T. Katayama, S. Yuasa, Defect-mediated properties of magnetic tunnel junctions. Magnetics, IEEE Transactions on, 43(2007) 2770-2775.
DOI: 10.1109/tmag.2007.893311
Google Scholar
[50]
J. P. Velev, K. D. Belashchenko, D. A. Stewart, M. van Schilfgaarde, S. S. Jaswal, E. Y. Tsymbal, Negative Spin Polarization and Large Tunneling Magnetoresistance in Epitaxial Co| SrTiO 3| Co Magnetic Tunnel Junctions. Physical review letters, 95 (2005).
DOI: 10.1103/physrevlett.95.216601
Google Scholar
[51]
J. D. Burton, E. Y. Tsymbal, Magnetoelectric interfaces and spin transport. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370 (2012) 4840- 4855.
DOI: 10.1098/rsta.2012.0205
Google Scholar
[52]
M. Bibes, J. E. Villegas, A. Barthelemy, Ultrathin oxide films and interfaces for electronics and spintronics. Advances in Physics, 60 (2011) 5-84.
DOI: 10.1080/00018732.2010.534865
Google Scholar
[53]
R. Farshchi, M. Ramsteiner, Spin injection from Heusler alloys into semiconductors: A materials perspective. Journal of Applied Physics, 113 (2013) 191101 (15 pp).
DOI: 10.1063/1.4802504
Google Scholar
[54]
A. Hirohata, J. Sagar, L. Lari, L. R. Fleet, V. K. Lazarov, Heusler-alloy films for spintronic devices. Applied Physics A, 111 (2013) 423-430.
DOI: 10.1007/s00339-013-7679-2
Google Scholar
[55]
C. Palmstrøm, Epitaxial Heusler alloys: New materials for semiconductor spintronics. MRS bulletin, 28 (2003) 725-728.
DOI: 10.1557/mrs2003.213
Google Scholar
[56]
B. Balke, S. Wurmehl, G. H. Fecher, C. Felser, J. Kübler, Rational design of new materials for spintronics: Co2FeZ (Z= Al, Ga, Si, Ge). Science and Technology of advanced Materials, 9 (2008) 014102 (13 pp).
DOI: 10.1088/1468-6996/9/1/014102
Google Scholar
[57]
I. Galanakis, P. H. Dederichs, Half-metallic Alloys: Fundamentals and Applications. (Lecture Notes in Physics ; 676) Berlin : Springer (2005) 312 pp.
DOI: 10.1007/b137760
Google Scholar
[58]
J. D. Albrecht, D. L. Smith, Electron spin injection at a Schottky contact. Physical Review B, 66 (2002) 113303 (4 pp).
Google Scholar
[59]
B. C. Min, K. Motohashi, C. Lodder, R. Jansen, Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature materials, 5 (2006) 817-822.
DOI: 10.1038/nmat1736
Google Scholar
[60]
R. Jansen, B. C. Min, Detection of a spin accumulation in nondegenerate semiconductors. Physical review letters, 99 (2007) 246604 (4 pp).
Google Scholar
[61]
M. Tran, H. Jaffrès, C. Deranlot, J. M. George, A. Fert, A. Miard, A. Lemaître, Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor. Physical review letters, 102 (2009) 036601 (4 pp).
DOI: 10.1103/physrevlett.102.036601
Google Scholar
[62]
J. D. Albrecht, D. L. Smith, Spin-polarized electron transport at ferromagnet/semiconductor Schottky contacts. Physical Review B, 68 (2003) 035340 (14 pp).
DOI: 10.1103/physrevb.68.035340
Google Scholar
[63]
B. C. Min, K. Motohashi, C. Lodder, R. Jansen, Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nature materials, 5 (2006) 817-822.
DOI: 10.1038/nmat1736
Google Scholar
[64]
R. Jansen, B. C. Min, S. P. Dash, S. Sharma, G. Kioseoglou, A. T. Hanbicki, B. T. Jonker, Electrical spin injection into moderately doped silicon enabled by tailored interfaces. Physical Review B, 82 (2010) 241305 (4 pp).
DOI: 10.1103/physrevb.82.241305
Google Scholar
[65]
O. M. J. van't Erve, A. L. Friedman, C. H. Li, J. T. Robinson, J. Connell, L. J. Lauhon, B. T. Jonker, Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers. Nature communications, 6 (2015) 1-8.
DOI: 10.1038/ncomms8541
Google Scholar
[66]
O. M. J. van 't Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson and B. T. Jonker, Low-resistance spin injection into silicon using graphene tunnel barriers. Nature nanotechnology, 7 (2012) 737-742.
DOI: 10.1038/nnano.2012.161
Google Scholar
[67]
E. Cobas, A. L. Friedman, O. M. van't Erve, J. T. Robinson, B. T. Jonker, Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano letters, 12 (2012) 3000-3004.
DOI: 10.1021/nl3007616
Google Scholar
[68]
E. Cobas, A. L. Friedman, O. M. van't Erve, J. T. Robinson, B. T. Jonker, Graphene-based magnetic tunnel junctions. Magnetics, IEEE Transactions on, 49 (2013). 4343-4346.
DOI: 10.1109/tmag.2013.2245107
Google Scholar
[69]
M. Z. Iqbal, M. W. Iqbal, J. H. Lee, Y. S. Kim, S. H. Chun, J. Eom, Spin valve effect of NiFe/graphene/NiFe junctions. Nano Research, 6 (2013) 373-380.
DOI: 10.1007/s12274-013-0314-x
Google Scholar
[70]
W. Wang, A. Narayan, L. Tang, K. Dolui, Y. Liu, X. Yuan, Y. Jin,Y. Wu, I. Rungger, S. Sanvito, F. Xiu, Spin-valve Effect in NiFe/MoS2/NiFe Junctions. arXiv preprint arXiv: 1502. 06154 (2015) (8 pp).
DOI: 10.1021/acs.nanolett.5b01553
Google Scholar
[71]
K. H. Ploog, Spin injection in ferromagnet-semiconductor heterostructures at room temperature. Journal of applied physics, 91 (2002) 7256-7260.
DOI: 10.1063/1.1446125
Google Scholar
[72]
Y. B. Xu, E. T. M. Kernohan, D. J. Freeland, A. J. A. C. Ercole, M. Tselepi, J. A. C. Bland, Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs(100)-4× 6. Physical Review B, 58 (1998) 890 - 896.
DOI: 10.1103/physrevb.58.890
Google Scholar
[73]
Y. Saito, T. Marukame, T. Inokuchi, M. Ishikawa, H. Sugiyama, T. Tanamoto, Spin injection, transport, and read/write operation in spin-based MOSFET. Thin Solid Films, 519 (2011) 8266-8273.
DOI: 10.1016/j.tsf.2011.03.073
Google Scholar
[74]
T. Inokuchi, T. Marukame, T. Tanamoto, H. Sugiyama, M. Ishikawa, Y. Saito, Reconfigurable characteristics of spintronics-based MOSFETs for nonvolatile integrated circuits. In 2010 Symposium on VLSI Technology (VLSIT), IEEE (2010) pp.119-120.
DOI: 10.1109/vlsit.2010.5556194
Google Scholar
[75]
T. Marukame et al., Read/write operation of spin-based MOSFET using highly spin-polarized ferromagnet/MgO tunnel barrier for reconfigurable logic devices. in 2009 I.E. International Electron Devices Meeting (IEDM) (2009), p.1–4.
DOI: 10.1109/iedm.2009.5424385
Google Scholar
[76]
S. Sugahara, J. Nitta, Spin-transistor electronics: an overview and outlook. Proceedings of the IEEE, 98 (2010) 2124-2154.
DOI: 10.1109/jproc.2010.2064272
Google Scholar
[77]
C. H. Li, G. Kioseoglou, O. M. J. van 't Erve, P. E. Thompson, B. T. Jonker, Electrical spin injection into Si(001) through a SiO2 tunnel barrier. Appl. Phys. Lett. 95 (2009) 172102 (3 pp).
DOI: 10.1063/1.3254228
Google Scholar
[78]
K. Hayashi, Y. Takamura, R. Nakane, and S. Sugahara, Formation of Co2FeSi/SiOxNy/Si tunnel junctions for Si-based spin transistors, J. Appl. Phys., vol. 107 (2010) 09B104 (3 pp).
DOI: 10.1063/1.3350913
Google Scholar
[79]
C. H. Li, O. M. J. Van't Erve, B. T. Jonker, Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts. Nature Communications, 2 (2011) 245 (7 pp).
DOI: 10.1038/ncomms1256
Google Scholar