The Effect of Nitrogen Doping on the Elastic Properties of Silicene

Article Preview

Abstract:

This paper deals with the elastic properties of pure and nitrogen-doped silicene using density functional theory. During the compression (tension) from –2 to 2 GPa of pure and nitrogen-doped silicene, the corresponding values for the bulk modulus are obtained. It is found that the doping of the silicene structure with nitrogen has practically no effect on the value of its bulk modulus. However, the Young's modulus is increased of about 1.25 times.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

14-18

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Tang, Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater Sci. 58 (2013) 1244-1315.

Google Scholar

[2] F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Infrared absorbance of silicene and germanene, Appl. Phys. Lett. 100 (2012) 261906-1-261906-3.

DOI: 10.1063/1.4731626

Google Scholar

[3] C. Lian, J. Ni, Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study, AIP Advances. 3 (2013) 052102-1-052102-10.

DOI: 10.1063/1.4804246

Google Scholar

[4] T.H. Osborn, A.A. Farajian, Stability of lithiated silicene from first principles, J. Phys. Chem. C 116 (2012) 22916-22920.

DOI: 10.1021/jp306889x

Google Scholar

[5] R. Qin, C. -H. Wang, W. Zhu, Y. Zhang, First-principles calculations of mechanical and electronic properties of silicene under strain, AIP Advances 2 (2012) 022159-1-022159-6.

DOI: 10.1063/1.4732134

Google Scholar

[6] T. -H. Fang, W. -J. Chang, S. -H. Kang, J. -H. Liou, Effect of nitrogen doping on nanomechanical and surface properties of silicon film, Curr. Appl. Phys. 9 (2009) 1241-1245.

DOI: 10.1016/j.cap.2009.02.009

Google Scholar

[7] Q. -X. Pei, Z. -D. Sha, Y. -Y. Zhang, Y. -W. Zhang, Effects of temperature and strain rate on the mechanical properties of silicene, J. Appl. Phys. 115 (2014) 023519-1-023519-6.

Google Scholar

[8] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[9] P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals, Phys. Rev. B. 79 (2009) 085104-1-085104-10.

DOI: 10.1103/physrevb.79.209902

Google Scholar

[10] S. Mitra, High pressure geochemistry & mineral physics, Elsevier, Amsterdam, (2004).

Google Scholar

[11] A.N. Chibisov, Ab initio calculations of elastic properties of titanium nanoclusters, Nanotechnol. Russ. 9 (2014) 189-193.

DOI: 10.1134/s1995078014020050

Google Scholar

[12] Yu.V. Lunyakov, S.A. Balagan, Bulk moduli of the silicon and germanium fullerenes Si60 and Ge60, Phys. Solid State. 57 (2015) 1073-1078.

DOI: 10.1134/s1063783415060220

Google Scholar

[13] J.J. Hall, Electronic effects in the elastic constants of n-type silicon, Phys. Rev. 161 (1967) 756-761.

Google Scholar

[14] A.N. Chibisov, M.A. Chibisova, First-principle calculations of the structural and elastic properties of titanium nanowires, Mater. Lett. 141 (2015) 333-335.

DOI: 10.1016/j.matlet.2014.11.107

Google Scholar

[15] E. Anastassakis, M. Siakavellas, Elastic properties of textured diamond and silicon, J. Appl. Phys. 90 (2001) 144-152.

DOI: 10.1063/1.1332096

Google Scholar

[16] M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young's modulus of silicon?, J. Microelectromech. Syst. 19 (2010) 229-238.

DOI: 10.1109/jmems.2009.2039697

Google Scholar

[17] N.Y. Dzade, K.O. Obodo, S.K. Adjokatse, A.C. Ashu, E. Amankwah, C.D. Atiso, A.A. Bello, E. Igumbor, S.B. Nzabarinda, J.T. Obodo, A.O. Ogbuu, O.E. Femi, J.O. Udeigwe, U.V. Waghmare, Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet, J. Phys.: Condens. Matter. 22 (2010).

DOI: 10.1088/0953-8984/22/37/375502

Google Scholar

[18] Y. Jing, Y. Sun, H. Niu, J. Shen, Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension, Phys. Status Solidi B. 250 (2013) 1505-1509.

DOI: 10.1002/pssb.201349023

Google Scholar