[1]
Q. Tang, Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater Sci. 58 (2013) 1244-1315.
Google Scholar
[2]
F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Infrared absorbance of silicene and germanene, Appl. Phys. Lett. 100 (2012) 261906-1-261906-3.
DOI: 10.1063/1.4731626
Google Scholar
[3]
C. Lian, J. Ni, Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study, AIP Advances. 3 (2013) 052102-1-052102-10.
DOI: 10.1063/1.4804246
Google Scholar
[4]
T.H. Osborn, A.A. Farajian, Stability of lithiated silicene from first principles, J. Phys. Chem. C 116 (2012) 22916-22920.
DOI: 10.1021/jp306889x
Google Scholar
[5]
R. Qin, C. -H. Wang, W. Zhu, Y. Zhang, First-principles calculations of mechanical and electronic properties of silicene under strain, AIP Advances 2 (2012) 022159-1-022159-6.
DOI: 10.1063/1.4732134
Google Scholar
[6]
T. -H. Fang, W. -J. Chang, S. -H. Kang, J. -H. Liou, Effect of nitrogen doping on nanomechanical and surface properties of silicon film, Curr. Appl. Phys. 9 (2009) 1241-1245.
DOI: 10.1016/j.cap.2009.02.009
Google Scholar
[7]
Q. -X. Pei, Z. -D. Sha, Y. -Y. Zhang, Y. -W. Zhang, Effects of temperature and strain rate on the mechanical properties of silicene, J. Appl. Phys. 115 (2014) 023519-1-023519-6.
Google Scholar
[8]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009).
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[9]
P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals, Phys. Rev. B. 79 (2009) 085104-1-085104-10.
DOI: 10.1103/physrevb.79.209902
Google Scholar
[10]
S. Mitra, High pressure geochemistry & mineral physics, Elsevier, Amsterdam, (2004).
Google Scholar
[11]
A.N. Chibisov, Ab initio calculations of elastic properties of titanium nanoclusters, Nanotechnol. Russ. 9 (2014) 189-193.
DOI: 10.1134/s1995078014020050
Google Scholar
[12]
Yu.V. Lunyakov, S.A. Balagan, Bulk moduli of the silicon and germanium fullerenes Si60 and Ge60, Phys. Solid State. 57 (2015) 1073-1078.
DOI: 10.1134/s1063783415060220
Google Scholar
[13]
J.J. Hall, Electronic effects in the elastic constants of n-type silicon, Phys. Rev. 161 (1967) 756-761.
Google Scholar
[14]
A.N. Chibisov, M.A. Chibisova, First-principle calculations of the structural and elastic properties of titanium nanowires, Mater. Lett. 141 (2015) 333-335.
DOI: 10.1016/j.matlet.2014.11.107
Google Scholar
[15]
E. Anastassakis, M. Siakavellas, Elastic properties of textured diamond and silicon, J. Appl. Phys. 90 (2001) 144-152.
DOI: 10.1063/1.1332096
Google Scholar
[16]
M.A. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young's modulus of silicon?, J. Microelectromech. Syst. 19 (2010) 229-238.
DOI: 10.1109/jmems.2009.2039697
Google Scholar
[17]
N.Y. Dzade, K.O. Obodo, S.K. Adjokatse, A.C. Ashu, E. Amankwah, C.D. Atiso, A.A. Bello, E. Igumbor, S.B. Nzabarinda, J.T. Obodo, A.O. Ogbuu, O.E. Femi, J.O. Udeigwe, U.V. Waghmare, Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet, J. Phys.: Condens. Matter. 22 (2010).
DOI: 10.1088/0953-8984/22/37/375502
Google Scholar
[18]
Y. Jing, Y. Sun, H. Niu, J. Shen, Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension, Phys. Status Solidi B. 250 (2013) 1505-1509.
DOI: 10.1002/pssb.201349023
Google Scholar