Resonant Reflectance in Silicon Nanorods Arrays

Article Preview

Abstract:

The optical properties of ordered arrays of silicon nanorods (Si NRs) were investigated. Electron Beam Lithography followed by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) was used for Si NRs fabrication. Si NRs were chemically and electrically passivated through the deposition of TiONx nanolayer. Tunable color generation from vertical silicon nanorods is demonstrated too.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

8-13

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, X. W. Sun, Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications, Optics Lett. 36 (2011) 1884-1886.

DOI: 10.1364/ol.36.001884

Google Scholar

[2] B. Hua, Q. Lin, Q. Zhang, Z. Fan, Efficient photon management with nanostructures for photovoltaics, Nanoscale 5 (2013) 6627-6640.

DOI: 10.1039/c3nr01152f

Google Scholar

[3] Wei-Yu Chiu, Tai-Wei Huang et al., A photonic crystal ring resonator formed by SOI nano-rods, Optics Express 15 (2007) 15500-15506.

DOI: 10.1364/oe.15.015500

Google Scholar

[4] P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators, Nature Communications 3 (2012) 692.

DOI: 10.1038/ncomms1691

Google Scholar

[5] P. Krogstrup, H. I. JØrgensen et al., Single-nanowire solar cells beyond the Shockley–Queisser limit, Nature Photonics 7 (2013) 306–310.

DOI: 10.1038/nphoton.2013.32

Google Scholar

[6] T. Zijilstra, E. Van der Drift et al., Fabrication of two-dimensional photonic crystal waveguides for 1. 5 μm in silicon by deep anisotropic dry etching, J. Vac. Sci. Technol. B. 17(6) (1999) 2734-2739.

DOI: 10.1116/1.591054

Google Scholar

[7] Tao Song, Shuit-Tong Lee, Baoquan Sun, Silicon nanowires for photovoltaic applications: the progress and challenge, Nano Energy 1 (2012) 654-673.

DOI: 10.1016/j.nanoen.2012.07.023

Google Scholar

[8] K. Seo, M. Wober, P. Steinvurzel et al., Multicolored Vertical Silicon Nanowires, Nano Lett. 11 (2011) 1851-1856.

DOI: 10.1021/nl200201b

Google Scholar

[9] M. Khorasaninejad, N. Abedzadeh et al., Color Matrix Refractive Index Sensors Using Coupled Vertical Silicon Nanowire Arrays, Nano Lett. 12 (2012) 4228-4234.

DOI: 10.1021/nl301840y

Google Scholar

[10] F. J. Bezares, J. P. Long et al., Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays, Optics Express 21 (2013) 27587-27601.

DOI: 10.1364/oe.21.027587

Google Scholar

[11] Sheng-Chieh Yang, Karola Richter et al., Multicolor generation using silicon nanodisk absorber, Appl. Phys. Lett. 106 (2015) 081112.

DOI: 10.1063/1.4913847

Google Scholar

[12] K.T. Fountaine, W. S. Whitney, H.A. Atwater, Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes, J. Appl. Phys. 116 (2014) 153106.

DOI: 10.1063/1.4898758

Google Scholar

[13] Yonggang Wu, Zihuan Xia et al., Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications, Optics Express 22 (2014) A1292-A1302.

DOI: 10.1364/oe.22.0a1292

Google Scholar

[14] X. Li, J. Li et al., Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications, Nanoscale Res. Lett. 5 (2010) 1721-1726.

DOI: 10.1007/s11671-010-9701-3

Google Scholar

[15] Z. Fan, D. J. Ruebusch et al., Challenges and prospects of nanopillar based solar cells, Nano Res. 2 (2009) 829-843.

Google Scholar

[16] S. Dominguez, I. Cornago et al., Design, optimization and fabrication of 2D photonic crystals for solar cells, Photonics and nanostructures – Fundamentals and Application 11 (2013) 29-36.

DOI: 10.1016/j.photonics.2012.07.002

Google Scholar

[17] Chog Barugkin, Thomas Allen et al., Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence, Optics Express 23 (2015) A391-A400.

DOI: 10.1364/oe.23.00a391

Google Scholar

[18] M. Steglich, T. Kasebier et al., The structural and optical properties of black silicon by inductively coupled plasma reactive ion etching, J. Appl. Phys. 116 (2014) 173503.

DOI: 10.1063/1.4900996

Google Scholar

[19] H. Park, K. B. Crozier, Vertically stacked photodetector devices containing silicon nanowires with engineered absorption spectra, ACS Photonics 2 (2015) 544-549.

DOI: 10.1021/ph500463r

Google Scholar

[20] H. Park, K.B. Crozier, Multispectral imaging with vertical silicon nanowires, Scientific Reports 3 (2013).

Google Scholar

[21] H. Park, Y. Dan, K. Seo et al., Filter-free image sensor pixels comprising silicon nanowires with selective color absorption, Nano Lett. 14 (2014) 1804-1809.

DOI: 10.1021/nl404379w

Google Scholar

[22] F. Dominec, C. Kadlec et al., Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods, Optics Express 22 (2014) 30492- 30503.

DOI: 10.1364/oe.22.030492

Google Scholar

[23] L.S. Golobokova, Yu.V. Nastaushev, F.N. Dultsev, D.V. Gulyaev, A.B. Talochkin, A.V. Latyshev., Fabrication and optical properties of silicon nanopillars, IOP Journal of Physics: Conference Series 541 (2014) 012074.

DOI: 10.1088/1742-6596/541/1/012074

Google Scholar

[24] L.S. Golobokova, Yu.V. Nastaushev, F.N. Dultsev, N.V. Kryzhanovskaya, E.I. Moiseev, A.S. Kozhukhov, A.V. Latyshev, Optical and electrical properties of silicon nanopillars, Semiconductors 49(7) (2015) 939-943.

DOI: 10.1134/s1063782615070088

Google Scholar

[25] F. N. Dultsev, S. N. Svitasheva, Yu. V. Nastaushev, A. L. Aseev, Ellipsometric investigation of the mechanism of the formation of titanium oxynitride nanolayers, Thin Solid Films 519 (2011) 6344-6348.

DOI: 10.1016/j.tsf.2011.04.034

Google Scholar