Computer Simulation of the Equilibrium Morphology of Zirconia Nanocrystals

Article Preview

Abstract:

The paper presents the theoretical calculations of the structure and morphology of ZrO2 nanocrystals. The equilibrium morphology shapes of tetragonal and cubic nanocrystals were determined. It was shown that the equilibrium morphology was determined by an appropriate set of faces of tetragonal and cubic phases of zirconium oxide.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

3-7

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Gómez, T. Lopez, X. Bokhimi, E. Muñoz, J.L. Boldú O.J. Novaro, Dehydroxylation and the Crystalline Phases in Sol-Gel Zirconia, J. Sol-Gel Sci. Techn. 11 (1998) 309-319.

DOI: 10.1023/a:1008666531404

Google Scholar

[2] W. Hu, S. Liu, Y. Zhang, J. Xiang, F. Wen, B. Xu, J. He, D. Yu, Y. Tian, Z. Liu, Annealing-Induced {011}-Specific Cyclic Twins in Tetragonal Zirconia Nanoparticles, J. Phys. Chem. 116 (2012) 21052–21058.

DOI: 10.1021/jp305881r

Google Scholar

[3] S. Numan, S.S. Habib, Z.H. Khan, F. Djouider, Thermoluminescence and photoluminescence of ZrO2 nanoparticles, Radiat. Phys. Chem. 80 (2011) 923-928.

DOI: 10.1016/j.radphyschem.2011.03.023

Google Scholar

[4] S. Roy, J.J. Ghose, Synthesis of stable nanocrystalline cubic zirconia, Mater. Res. Bull. 35 (2000) 1195-1203.

DOI: 10.1016/s0025-5408(00)00314-7

Google Scholar

[5] Gurudayal, A.K. Srivastava, On the emergence of a stabilized cubic phase in pure zirconia thin films at room temperature, J. Kumar, Mater. Lett. 83 (2012) 172-174.

DOI: 10.1016/j.matlet.2012.05.128

Google Scholar

[6] R.C. Garvie, The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect, J. Phys. Chem. 69 (1965) 1238-1243.

DOI: 10.1021/j100888a024

Google Scholar

[7] R.C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82 (1978) 218-224.

DOI: 10.1021/j100491a016

Google Scholar

[8] A. Suresh, M.J. Mayo, W.D. Porter, C.J. Rawn, Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia, J. Am. Ceram. Soc. 86 (2003) 360-362.

DOI: 10.1111/j.1151-2916.2003.tb00025.x

Google Scholar

[9] G. Stefanic, S. Music, Factors Influencing the Stability of Low Temperature Tetragonal ZrO2, Croat. Chem. Acta 75 (2002) 727-767.

Google Scholar

[10] S. Tsunekawa, S. Ito, Y. Kawazoe, J. -T. Wang, Critical Size of the Phase Transition from Cubic to Tetragonal in Pure Zirconia Nanoparticles, Nano Lett. 3(7) (2003) 871–875.

DOI: 10.1021/nl034129t

Google Scholar

[11] A. Christensen, E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B 58 (1998) 8050.

Google Scholar

[12] C. Ricca, A. Ringuede, M. Cassir, C. Adamo, F. Labat, A comprehensive DFT investigation of bulk and low-index surfaces of ZrO2 polymorphs, J. Comput. Chem. 36 (2015) 9-21.

DOI: 10.1002/jcc.23761

Google Scholar

[13] A.S. Barnard, R.R. Yeredla, H. Xu, Modelling the effect of particle shape on the phase stability of ZrO2 nanoparticles, Nanotechnology 17 (2006) 3039-3047.

DOI: 10.1088/0957-4484/17/12/038

Google Scholar

[14] A.S. Barnard, P. Zapol, A model for the phase stability of arbitrary nanoparticles as a function of size and shape, J. Chem. Phys. 121 (2004) 4276-4283.

DOI: 10.1063/1.1775770

Google Scholar

[15] G. Ballabio, M. Bernasconi, F. Pietrucci, S. Serra, Ab initio study of yttria-stabilized cubic zirconia surfaces, Phys. Rev. B 70 (2004) 075417.

DOI: 10.1103/physrevb.70.075417

Google Scholar

[16] M. Alfredsson, C.R.A. Catlow, Modelling of Pd and Pt supported on the {111} and {011} surfaces of cubic-ZrO2, Phys. Chem. Chem. Phys. 3 (2001) 4129-4140.

DOI: 10.1039/b102261j

Google Scholar

[17] W. Piskorz, J. Grybos, F. Zasada, P. Zapała, S. Cristol, J. -F. Paul, Z. Sojka, Periodic DFT Study of the Tetragonal ZrO2 Nanocrystals: Equilibrium Morphology Modeling and Atomistic Surface Hydration Thermodynamics, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp3050059

Google Scholar

[18] R. Docherty, G. Clydesdale, K.J. Roberts, P. Bennema, Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals, J. Phys. D: Appl. Phys. 24 (1991) 89-99.

DOI: 10.1088/0022-3727/24/2/001

Google Scholar

[19] M. Bockstedte, A. Kley, J. Neugebauer, M. Scheffler, Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics, Comp. Phys. Commun. 107 (1997) 187-222.

DOI: 10.1016/s0010-4655(97)00117-3

Google Scholar

[20] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.

DOI: 10.1103/physrev.136.b864

Google Scholar

[21] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) 1133.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[22] J.P. Perdew, Y. Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33 (1986) 8800.

DOI: 10.1103/physrevb.33.8800

Google Scholar

[23] N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) (1993).

DOI: 10.1103/physrevb.43.1993

Google Scholar

[24] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comp. Phys. Commun. 119 (1999) 67-98.

DOI: 10.1016/s0010-4655(98)00201-x

Google Scholar