Effect of Density on Compressive Strength of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Using Design of Experiment

Article Preview

Abstract:

This paper aims to model the effect of density in 7, 14, 28 days on compressive strength of Ultra High Performance Concrete (UHPC) in same compaction and curing conditions by Design of Experiments (DOE) methodology using vary range of 5 variables: Silica fume (SF), Steel Fiber, Cement 42.5, Superplasticizer (SP), and water cemetiotious ratio (w/c).The results shows the significance effect of density on compressive strength of UHPC in different days, The models are valid for the mixes made with 1.0 sand, 0.15-0.30 silica fume amount, 0.70-1.30 cement amount, 0.10- 0.20 steel fiber, 0.04- 0.08 superplasticizer (all values are by sand by weight mass) and 0.18- 0.32 water cementitious ratio.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 249)

Pages:

119-124

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang, X. Y. (2014). Properties prediction of Ultra High performance concrete using blended cement hydration model. Construction and Building Materials, 64, 1-10.

DOI: 10.1016/j.conbuildmat.2014.04.084

Google Scholar

[2] Alqadi, A. N., Mustapha, K. N. B., Naganathan, S., & Al-Kadi, Q. N. (2013). Development of self-compacting concrete using contrast constant factorial design. Journal of King Saud University-Engineering Sciences, 25(2), 105-112.

DOI: 10.1016/j.jksues.2012.06.002

Google Scholar

[3] Soudki, K. A., El-Salakawy, E. F., & Elkum, N. B. (2001). Full factorial optimization of concrete mix design for hot climates. Journal of Materials in Civil Engineering, 13(6), 427-433.

DOI: 10.1061/(asce)0899-1561(2001)13:6(427)

Google Scholar

[4] Aldahdooh, M. A. A., Bunnori, N. M., & Johari, M. M. (2013). Evaluation of ultra-high-performance-fiber reinforced concrete binder content using the response surface method. Materials & Design, 52, 957-965.

DOI: 10.1016/j.matdes.2013.06.034

Google Scholar

[5] Mahmud, G. H., Yang, Z., & Hassan, A. M. (2013). Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials, 48, 1027-1034.

DOI: 10.1016/j.conbuildmat.2013.07.061

Google Scholar

[6] Al-Azzawi, A. A., Ali, A. S., & Risan, H. K. (2011). Behavior of Ultra High performance concrete structures. ARPN Journal of Engineering and Applied Sciences, 6(5), 95-109.

Google Scholar

[7] Yu, R., Spiesz, P., & Brouwers, H. J (2014). Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research, 56, 29-39.

DOI: 10.1016/j.cemconres.2013.11.002

Google Scholar

[8] Wang, C., Yang, C., Liu, F., Wan, C., & Pu, X. (2012). Preparation of ultra-high performance concrete with common technology and materials. Cement and Concrete Composites, 34(4), 538-544.

DOI: 10.1016/j.cemconcomp.2011.11.005

Google Scholar

[9] Wille, K., & Boisvert-Cotulio, C. (2015). Material efficiency in the design of ultra-high performance concrete. Construction and Building Materials, 86, 33-43.

DOI: 10.1016/j.conbuildmat.2015.03.087

Google Scholar

[10] Zain, M. F. M., Abd, S. M., Sopian, K., Jamil, M., & Che-Ani, A. I. (2008, October). Mathematical regression model for the prediction of concrete strength. In N. E. Mastorakis, M. Poulos, V. Mladenov, Z. Bojkovic, D. Simian, S. Kartalopoulos, .. & C. Udriste (Eds. ), WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering (No. 10). WSEAS.

Google Scholar

[11] Mattacchione, A., & Mattacchione, L. (1995). CORRELATION BETWEEN 28-DAY STRENGTH AND DENSITY. Concrete International, 17(3).

Google Scholar

[12] Arafa, M., Shihada, S., & Karmout, M. (2010). Mechanical properties of ultra high performance concrete produced in the Gaza Strip. Asian Journal of Materials Science, 2(1), 1-12.

DOI: 10.3923/ajmskr.2010.1.12

Google Scholar

[13] Senthil Kumar, K., & Baskar, K. (2014). Response Surfaces for Fresh and Hardened Properties of Concrete with E-Waste (HIPS). Journal of Waste Management, (2014).

DOI: 10.1155/2014/517219

Google Scholar

[14] Ma, J., Orgass, M., Dehn, F., Schmidt, D., & Tue, N. V. (2004, September). Comparative investigations on ultra-high performance concrete with and without coarse aggregates. In Proceedings International Symposium on Ultra High Performance Concrete (UHPC), Kassel, Germany.

DOI: 10.21838/uhpc.16728

Google Scholar

[15] Mohammed, B. S., Abdullahi, M., & Hoong, C. K. (2014). Statistical models for concrete containing wood chipping as partial replacement to fine aggregate. Construction and Building Materials, 55, 13-19.

DOI: 10.1016/j.conbuildmat.2014.01.021

Google Scholar