Fatigue Cracking of AA2519-Ti6Al4V Laminate Bonded by Explosion Welding

Article Preview

Abstract:

This paper presents test results of AA2519/TI6AL4V composite laminate structure and mechanical properties. The composite laminate was merged by explosive welding using a transition AA1050 alloy layer. The tested composite after formation was annealed, quenched in water and then aged to strengthen it. The heat treatment process was carried out in order to improve the physical and strength properties of the laminate. Weld endurance properties were determined through fatigue testing performed in constant total deformation amplitude (εac) conditions. The paper also describes the influence of test conditions on hysteresis loop shape, process of cyclic material strengthening and weakening, and fatigue life. Low cycle test results were approximated using a straight line with the following formula: σa = K'(εap)n which enables the K' fatigue strength coefficient, and the n' cyclic strengthening index to be determined. Test results also include fatigue fracture surface analysis. Distinctive fatigue fissure characteristics were investigated through studying fatigue fracture surface microstructure using a scanning electron microscope.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 250)

Pages:

182-190

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lubkowski D., Zimniak J., Badania wybranych wlasciwosci mechanicznych polaczen adhe-zyjnych: metal/laminat, Inzynieria i Aparatura Chemiczna 2006 p.45. (in Polish).

Google Scholar

[2] Bataev I. A., Bataev A. A., Mali V.I., Pavliukova D.V., Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Ma-terials and Design 35, 2012, p.225–234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[3] Rohatgi A., Harach D. J,. Vecchio K. S, Harvey K. P., Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites, Acta Materialia 51, 2003, p.2933–2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[4] Jiang S., Li S., Zhang L., Microstructure evolution of Al-Ti liquid-solid inter-face. Trans. Nonferrous Met. Soc. China 23(2013) 3545-3552.

DOI: 10.1016/s1003-6326(13)62899-x

Google Scholar

[5] Kahraman N., Gulenc B., Findik F., Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti–6Al–4V and Al plates. International Journal of Impact Engineering 34 (2007) 1423–1432.

DOI: 10.1016/j.ijimpeng.2006.08.003

Google Scholar

[6] Peng L.M., Li H., Wang J.H., Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti–Al3Ti) composites. Materials Science and Engineering A 406 (2005) 309–318.

DOI: 10.1016/j.msea.2005.06.067

Google Scholar

[7] Morizono V., Fukuyama T., Matsuda M., Tsurekawa S., Solid- and liquid-solid reactions in aluminum-coated titanium substrate fabricated by using explosive energy. Materials Transac-tions, Vol. 52, No. 12 (2011) p.2178 to 2183.

DOI: 10.2320/matertrans.m2011228

Google Scholar

[8] Price R. D., Jiang F., Kulin R.M., Vecchio K. S., Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Timetal-intermetallic laminate (MIL) composites. Materials Science and Engineering A 528 (2011) 3134–3146.

DOI: 10.1016/j.msea.2010.12.087

Google Scholar

[9] Li T., Jiang F., Olevsky E. A., Vecchio K. S., Meyers M. A., Damage evolution in Ti6Al4V–Al3Ti metal-intermetallic laminate composites. Materials Science and Engineering A 443 (2007) 1–15.

DOI: 10.1016/j.msea.2006.05.037

Google Scholar

[10] Peng L. M., Wang J. H., Li H., Zhao J. H., He L. H., Synthesis and microstructural characte-rization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites, Scripta Materialia, Vol. 52, 2005, p.243–248.

DOI: 10.1016/j.scriptamat.2004.09.010

Google Scholar

[11] Luo J.G., Acoff V.L., Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Materials Science and Engineering A 379 (2004) 164–172.

DOI: 10.1016/j.msea.2004.01.021

Google Scholar

[12] Lipski A., Nieslony A., Porownanie charakterystyk zmęczeniowych blachy ze stopu aluminium 2024-T3 wyznaczonych metoda konwencjonalna i 3D, Zmeczenie i Mechanika Pekania, Materialy XXIII Sympozjum Zmeczenia i Mechaniki Pekania, Bydgoszcz 2010, s. 287-296 (in Polish).

Google Scholar

[13] Kurek A., Nieslony A., Trwalosc zmeczeniowa materialow bimetalicznych platerowanych metoda wybuchowa, , Czesc I, Nauki inzynieryjne, Creative Science - Monografia 2011, Krakow 2011, ss. 38-46 (in Polish).

Google Scholar

[14] Kurek A., Nieslony A., Fatigue life tests of explosively cladded steel-titanium bimetal, Materials Science Forum vol. 726, 2012. pp.106-109.

DOI: 10.4028/www.scientific.net/msf.726.106

Google Scholar

[15] Kurek A., Nieslony A., Fatigue life of bimetallic materials clad by means of the explosive method, part IV, tom 2, Creative Science - Monografia 2012, pp.31-38.

Google Scholar

[16] Hutsaylyuk, V., Sulym, H., Pasternak, Ia., Turchyn, I., Transient plane waves propagation in non-homogeneous elastic plate. – Composite Materials: The Great Advance. Proc. of the 19th Int. Conf. Composite Materials, ICCM19 (Montreal, Canada, 28 July – 2 August 2013), p.8890.

Google Scholar

[17] Sniezek L., Szachogluchowicz I., Gocman K., The mechanical properties of composites AA2519-Ti6Al4V obtained by detonation method. – Intelligent Technologies in Logistcs and Mechatronics Systems ITELMS'2014, Proc. of The 9™ International Conference edited by Z. Bazaras and V. Kleiza, 2013, p.214.

Google Scholar

[18] Sniezek L., Szachogluchowicz I., Hutsaylyuk V., Research of property fatigue advanced Al/Ti laminate. – Intelligent Technologies in Logistcs and Mechatronics Systems ITELMS'2014, Proc. of The 9™ International Conference edited by Z. Bazaras and V. Kleiza, 2014, p.232.

Google Scholar

[19] Sniezek L., Szachogluchowicz I., Wozniak R., Koperski W., Preliminary research of ballistic resistance of AA2519-Ti6Al4V. – Proceedings of 10th International Armament Conference on Scientific Aspects of Armament and Safety Technology, 2014, pp.100-101.

Google Scholar

[20] Belzowski A., Podstawowe wiadomosci o probach wytrzymalosci materialow kompozyto-wych., 2007, p.16. (in Polish).

Google Scholar