The Influence of Multiaxial Superimposed Static Mean Stress on High-Cycle Fatigue Life of Cu-ETP Copper

Article Preview

Abstract:

High–cycle multiaxial fatigue tests under proportional and non-proportional loading conditions with various combinations of superimposed static mean stresses was carried out on Cu-ETP copper. The results show differences in fatigue life between various ratios of mean stresses. These results are similar to others described in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 250)

Pages:

157-162

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Lipski, S. Mroziński, Approximate determination of a strain-controlled fatigue life curve for aluminum alloy sheets for aircraft structures. Int J Fatigue 39 (2012) 2–7.

DOI: 10.1016/j.ijfatigue.2011.08.007

Google Scholar

[2] L. Pejkowski, D. Skibicki, J. Sempruch, High cycle fatigue behavior of austenitic steel and pure copper under uniaxial, proportional and non-proportional loading. Stroj Vestn - J Mech Eng 60 (2014) 549–560.

DOI: 10.5545/sv-jme.2013.1600

Google Scholar

[3] Z.R. Wu , X.T. Hu, Y.D. Song, Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. Int J Fatigue 59 (2014) 170–175.

DOI: 10.1016/j.ijfatigue.2013.08.028

Google Scholar

[4] L. Pejkowski, D. Skibicki. Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings. J Theor Appl Mech 50 (2012) 1073–1086.

DOI: 10.4028/www.scientific.net/msf.726.189

Google Scholar

[5] D. Skibicki, J. Sempruch, L. Pejkowski. Model of non-proportional fatigue load in the form of block load spectrum, Materwiss Werksttech 45 (2014) 68–78.

DOI: 10.1002/mawe.201400206

Google Scholar

[6] A. Nieslony, M. Ruzicka, J. Papuga, A. Hodr, M. Balda, J. Svoboda, Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes, Int J Fatigue 44 (2012) 74–88.

DOI: 10.1016/j.ijfatigue.2012.05.014

Google Scholar

[7] A. Karolczuk, Y. Nadot, A. Dragon, Non-local stress gradient approach for multiaxial fatigue of defective material. Comput Mater Sci 44 (2008) 464–475.

DOI: 10.1016/j.commatsci.2008.04.005

Google Scholar

[8] T. Tomaszewski, J. Sempruch, T. Piatkowski, Verification of selected models of the size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy, J Theor Appl Mech 52 (2014) 883–894.

DOI: 10.15632/jtam-pl.52.4.883

Google Scholar

[9] R. Soltysiak, D. Boronski, Strain analysis at notch root in laser welded samples using material properties of individual weld zones, Int J Fatigue 74 (2015) 71–80.

DOI: 10.1016/j.ijfatigue.2014.12.004

Google Scholar

[10] N. Gates, A. Fatemi, Notched fatigue behavior and stress analysis under multiaxial states of stress, Int J Fatigue 67 (2014) 2–14.

DOI: 10.1016/j.ijfatigue.2014.01.014

Google Scholar

[11] K. Kluger, T. Lagoda, Fatigue life of metallic material estimated according to selected models and load conditions, J Theor Appl Mech 51 (2013) 581–592.

Google Scholar

[12] G. Szala, B. Ligaj, Effect of the Exponent in the Description of Wöhler Fatigue Diagram on the Results of Calculations of Fatigue Life, Key Eng. Mater., 598 (2014) 231–236.

DOI: 10.4028/www.scientific.net/kem.598.231

Google Scholar

[13] D. Krzyzak, M. Kurek, T. Lagoda, D. Sówka. Influence of changes of the bending plane position on the fatigue life. Materwiss Werksttech 45 (2014)1018–1029.

DOI: 10.1002/mawe.201400203

Google Scholar

[14] R.I. Stephens, A. Fatemi, R.R. Stephens, H. O Fuchs. Metal Fatigue in Engineering, Wiley (2000).

Google Scholar

[15] B. Ligaj, Effect of Stress Ratio on the Cumulative Value of Energy Dissipation, Key Eng. Mater. 598 (2014) 125–132.

DOI: 10.4028/www.scientific.net/kem.598.125

Google Scholar

[16] I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi, A comparative study of multiaxial high-cycle fatigue criteria for metals, Int J Fatigue 19 (1997) 219–235.

DOI: 10.1016/s0142-1123(96)00064-3

Google Scholar

[17] P. Davoli, A. Bernasconi, M. Filippini, S. Foletti, I.V. Papadopoulos, Independence of the torsional fatigue limit upon a mean shear stress. Int J Fatigue 25 (2003) 471–480.

DOI: 10.1016/s0142-1123(02)00174-3

Google Scholar

[18] L. Susmel, Multiaxial fatigue limits and material sensitivity to non-zero mean stresses normal to the critical planes. Fatigue Fract Eng Mater Struct 31 (2008) 295–309.

DOI: 10.1111/j.1460-2695.2008.01228.x

Google Scholar

[19] J. Zhang, Q. Xiao, X. Shi, B. Fei, Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy, Int J Fatigue 67 (2014) 173–182.

DOI: 10.1016/j.ijfatigue.2013.11.012

Google Scholar

[20] J. Zhang, X. Shi, R. Bao, B. Fei, Tension–torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios, Int J Fatigue 33 (2011) 1066–1074.

DOI: 10.1016/j.ijfatigue.2010.12.007

Google Scholar

[21] K. Kluger, Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress, Int J Fatigue 80 (2015) 22–29.

DOI: 10.1016/j.ijfatigue.2015.05.005

Google Scholar

[22] K. Kluger, T. Lagoda, New energy model for fatigue life determination under multiaxial loading with different mean values, Int J Fatigue 66 (2014) 229–245.

DOI: 10.1016/j.ijfatigue.2014.04.008

Google Scholar

[23] L. Pejkowski, D. Skibicki, Multiaxial Fatigue Life Assessment Method Based on the Mean Value of Modified Second Invariant of the Deviatoric Stress, Solid State Phenom 224 (2014) 15–20.

DOI: 10.4028/www.scientific.net/ssp.224.15

Google Scholar