[1]
A. Lipski, S. Mroziński, Approximate determination of a strain-controlled fatigue life curve for aluminum alloy sheets for aircraft structures. Int J Fatigue 39 (2012) 2–7.
DOI: 10.1016/j.ijfatigue.2011.08.007
Google Scholar
[2]
L. Pejkowski, D. Skibicki, J. Sempruch, High cycle fatigue behavior of austenitic steel and pure copper under uniaxial, proportional and non-proportional loading. Stroj Vestn - J Mech Eng 60 (2014) 549–560.
DOI: 10.5545/sv-jme.2013.1600
Google Scholar
[3]
Z.R. Wu , X.T. Hu, Y.D. Song, Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. Int J Fatigue 59 (2014) 170–175.
DOI: 10.1016/j.ijfatigue.2013.08.028
Google Scholar
[4]
L. Pejkowski, D. Skibicki. Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings. J Theor Appl Mech 50 (2012) 1073–1086.
DOI: 10.4028/www.scientific.net/msf.726.189
Google Scholar
[5]
D. Skibicki, J. Sempruch, L. Pejkowski. Model of non-proportional fatigue load in the form of block load spectrum, Materwiss Werksttech 45 (2014) 68–78.
DOI: 10.1002/mawe.201400206
Google Scholar
[6]
A. Nieslony, M. Ruzicka, J. Papuga, A. Hodr, M. Balda, J. Svoboda, Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes, Int J Fatigue 44 (2012) 74–88.
DOI: 10.1016/j.ijfatigue.2012.05.014
Google Scholar
[7]
A. Karolczuk, Y. Nadot, A. Dragon, Non-local stress gradient approach for multiaxial fatigue of defective material. Comput Mater Sci 44 (2008) 464–475.
DOI: 10.1016/j.commatsci.2008.04.005
Google Scholar
[8]
T. Tomaszewski, J. Sempruch, T. Piatkowski, Verification of selected models of the size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy, J Theor Appl Mech 52 (2014) 883–894.
DOI: 10.15632/jtam-pl.52.4.883
Google Scholar
[9]
R. Soltysiak, D. Boronski, Strain analysis at notch root in laser welded samples using material properties of individual weld zones, Int J Fatigue 74 (2015) 71–80.
DOI: 10.1016/j.ijfatigue.2014.12.004
Google Scholar
[10]
N. Gates, A. Fatemi, Notched fatigue behavior and stress analysis under multiaxial states of stress, Int J Fatigue 67 (2014) 2–14.
DOI: 10.1016/j.ijfatigue.2014.01.014
Google Scholar
[11]
K. Kluger, T. Lagoda, Fatigue life of metallic material estimated according to selected models and load conditions, J Theor Appl Mech 51 (2013) 581–592.
Google Scholar
[12]
G. Szala, B. Ligaj, Effect of the Exponent in the Description of Wöhler Fatigue Diagram on the Results of Calculations of Fatigue Life, Key Eng. Mater., 598 (2014) 231–236.
DOI: 10.4028/www.scientific.net/kem.598.231
Google Scholar
[13]
D. Krzyzak, M. Kurek, T. Lagoda, D. Sówka. Influence of changes of the bending plane position on the fatigue life. Materwiss Werksttech 45 (2014)1018–1029.
DOI: 10.1002/mawe.201400203
Google Scholar
[14]
R.I. Stephens, A. Fatemi, R.R. Stephens, H. O Fuchs. Metal Fatigue in Engineering, Wiley (2000).
Google Scholar
[15]
B. Ligaj, Effect of Stress Ratio on the Cumulative Value of Energy Dissipation, Key Eng. Mater. 598 (2014) 125–132.
DOI: 10.4028/www.scientific.net/kem.598.125
Google Scholar
[16]
I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi, A comparative study of multiaxial high-cycle fatigue criteria for metals, Int J Fatigue 19 (1997) 219–235.
DOI: 10.1016/s0142-1123(96)00064-3
Google Scholar
[17]
P. Davoli, A. Bernasconi, M. Filippini, S. Foletti, I.V. Papadopoulos, Independence of the torsional fatigue limit upon a mean shear stress. Int J Fatigue 25 (2003) 471–480.
DOI: 10.1016/s0142-1123(02)00174-3
Google Scholar
[18]
L. Susmel, Multiaxial fatigue limits and material sensitivity to non-zero mean stresses normal to the critical planes. Fatigue Fract Eng Mater Struct 31 (2008) 295–309.
DOI: 10.1111/j.1460-2695.2008.01228.x
Google Scholar
[19]
J. Zhang, Q. Xiao, X. Shi, B. Fei, Effect of mean shear stress on torsion fatigue failure behavior of 2A12-T4 aluminum alloy, Int J Fatigue 67 (2014) 173–182.
DOI: 10.1016/j.ijfatigue.2013.11.012
Google Scholar
[20]
J. Zhang, X. Shi, R. Bao, B. Fei, Tension–torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios, Int J Fatigue 33 (2011) 1066–1074.
DOI: 10.1016/j.ijfatigue.2010.12.007
Google Scholar
[21]
K. Kluger, Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress, Int J Fatigue 80 (2015) 22–29.
DOI: 10.1016/j.ijfatigue.2015.05.005
Google Scholar
[22]
K. Kluger, T. Lagoda, New energy model for fatigue life determination under multiaxial loading with different mean values, Int J Fatigue 66 (2014) 229–245.
DOI: 10.1016/j.ijfatigue.2014.04.008
Google Scholar
[23]
L. Pejkowski, D. Skibicki, Multiaxial Fatigue Life Assessment Method Based on the Mean Value of Modified Second Invariant of the Deviatoric Stress, Solid State Phenom 224 (2014) 15–20.
DOI: 10.4028/www.scientific.net/ssp.224.15
Google Scholar