[1]
Blum A., Niezgodzinski T., Lamellar cracks. Library of Maintenance Problems, Radom 2007 (in Polish).
Google Scholar
[2]
Pala R., Dzioba I., Influence of delamination on fracture toughness level. Logistics- science. (2014) nr 6, 8306–8312. (in Polish).
Google Scholar
[3]
Kalyanam S., Beaudoin A.J., Dodds R.H. Jr., Barlat F., Delamination cracking in advanced aluminum–lithium alloys – Experimental and computational studies, Engineering Fracture Mechanics; 76 (2009); 2174–2191.
DOI: 10.1016/j.engfracmech.2009.06.010
Google Scholar
[4]
Rao K.T.V., Yu W., Ritchie R.O. Cryogenic toughness of commercial aluminum–lithium alloys – role of delamination toughening. Metal Trans A 1989; 20: 485–97.
DOI: 10.1007/bf02653929
Google Scholar
[5]
Rao K.T.V., Ritchie R.O. Fracture toughness behavior of 2090-T83 aluminum–lithium alloy sheet at ambient and cryogenic temperatures. Scripta Metal 1989; 23: 1129–34.
DOI: 10.1016/0036-9748(89)90313-x
Google Scholar
[6]
Rao K.T.V., Ritchie R.O. Mechanical properties of Al–Li alloys, part I, fracture toughness and microstructure. Mater Sci Technol 1989; 5: 882–94.
Google Scholar
[7]
ASTM E1737-96. Standard Test Method for J-Integral Characterization of Fracture Toughness. Philadelphia; (1996).
Google Scholar
[8]
EN 10025-2: 2004, European Standard; (2004).
Google Scholar
[9]
Guo W. (1993), Elastoplastic three dimensional crack border field - I. Singular structure of the field, Engineering Fracture Mechanics 46, 93-104.
DOI: 10.1016/0013-7944(93)90306-d
Google Scholar
[10]
McClintock F.A. (1968), A Criterion for Ductile Fracture by Growth of Holes, Journal of Applied Mechanics, 4363-371.
Google Scholar
[11]
Neimitz A., Dzioba I., Pala R., Janus U. (2015), The influence of the out-of-plane constraint on fracture toughness of high strength steel at low temperatures, Solid State Phenomena, Vol. 224, 157-166.
DOI: 10.4028/www.scientific.net/ssp.224.157
Google Scholar