[1]
M. Skorupa, Empirical trends and prediction models for fatigue crack growth under variable amplitude loading, ECN-R-96 007, Netherlands Energy Research Foundation (ECN), Petten, The Netherlands, (1996).
Google Scholar
[2]
T. Machniewicz, Fatigue crack growth prediction models for metallic materials - Part I: Overview of prediction concepts, Fatigue Fract. Engng. Mater. Struct., 36 (2013) 293-307.
DOI: 10.1111/j.1460-2695.2012.01721.x
Google Scholar
[3]
J.C. Newman, A crack closure model for predicting fatigue crack growth under aircraft spectrum loading, in: J.B. Chang, C.M. Hudson (eds. ), Methods and Models for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, American Society for Testing and Materials, Philadelphia, 1981, pp.53-84.
DOI: 10.1520/stp28334s
Google Scholar
[4]
W. Elber, The significance of fatigue crack closure, in: Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials, Philadelphia 1971, pp.230-242.
DOI: 10.1520/stp26680s
Google Scholar
[5]
A. U de Koning, G. Liefting, Analysis of crack opening behavior by application of a discretized strip yield model, in: J.C. Newman, W. Elber (eds. ), Mechanics of Fatigue Crack Closure, ASTM STP 982, American Society for Testing and Materials, Philadelphia, 1988, p.437.
DOI: 10.1520/stp27224s
Google Scholar
[6]
G.S. Wang, A.F. Blom, A strip model for fatigue crack growth predictions under general load conditions, Engng Fracture Mech., 40 (1991) 507–533.
DOI: 10.1016/0013-7944(91)90148-t
Google Scholar
[7]
M. Toyosada, T. Niwa, Simulation model of fatigue crack opening/closing phenomena for predicting RPG load under arbitrary stress distribution field, in: Proc. of 5th Int. Offshore and Polar Engng. Conf., Hague, 1995, p.169–176.
Google Scholar
[8]
T. Machniewicz, Fatigue crack growth prediction models for metallic materials - Part II: Strip yield model – choices and decisions, Fatigue Fract. Engng. Mater. Struct., 36 (2013) 361-373.
DOI: 10.1111/ffe.12009
Google Scholar
[9]
M. Skorupa, T. Machniewicz, A. Skorupa, M. Carboni, S. Beretta, Experimental and theoretical investigation of fatigue crack closure in structural steel. in: A. Blom (ed), Proceedings of the 8th International Fatigue Congress FATIGUE 2002, EMAS, Stockholm, 2002, Vol. 4/5, pp.2309-2316.
DOI: 10.1046/j.1460-2695.2002.00444.x
Google Scholar
[10]
M. Skorupa, A. Skorupa, Experimental results and predictions on fatigue crack growth in structural steel, Int. J. Fatigue, 27 (2005) 1016-1028.
DOI: 10.1016/j.ijfatigue.2004.11.011
Google Scholar
[11]
S. Beretta S, M. Carboni M, A Strip-Yield algorithm for the analysis of closure evaluation near the crack tip, Engng. Fracture Mech., 72 (2005) 1222-1237.
DOI: 10.1016/j.engfracmech.2004.10.003
Google Scholar
[12]
T. Machniewicz, Fatigue crack growth predictions for selected metallic materials, AGH University of Science and Technology Press, Krakow, 2012 (in Polish).
Google Scholar
[13]
M. Skorupa, T. Machniewicz, Application of the strip yield model to crack growth predictions for structural steel, Archive of Mechanical Engineering, 57 (2010) 5-20.
DOI: 10.2478/v10180-010-0001-3
Google Scholar
[14]
M. Skorupa, Load interaction effects during fatigue crack growth under variable amplitude loading – a literature review. Part I: Empirical trends, Fatigue Fract. Engng. Mater. Struct., 21 (1998) 987-1006.
DOI: 10.1046/j.1460-2695.1998.00083.x
Google Scholar