Accelerated Determination of the Fatigue Limit and the S-N Curve by Means of the Thermographic Method for C45 Steel

Article Preview

Abstract:

The paper presents a new thermographic method that enables simultaneous accelerated determination of the fatigue limit and the S-N curve. In the presented method, the fatigue limit was determined assuming a constant rate of temperature rise occurring in the second phase of a specimen fatigue life. The S-N curve was developed based on energy-related parameter with the assumption of its dependency on the stress amplitude. The tests made on C45 steel under reversed bending revealed that the fatigue limit value obtained from accelerated thermographic tests as compared to the value obtained using Staircase method differs by 10.0% maximum.The S-N curve obtained by accelerated thermographic method fits inside 95% confidence interval for the S-N curve obtained from the full test.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 250)

Pages:

106-113

Citation:

Online since:

April 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Litwinko R., Oliferuk W., Yield Point Determination Based On Thermomechanical Behaviour Of Polycrystalline Material Under Uniaxial Loading, Acta Mechanica et Automatica, 3 (4), 2009, 49-51.

Google Scholar

[2] Lipski A., Impact of the Strain Rate During Tension Test on 46Cr1 Steel Temperature Change, Key Engineering Materials, 598, 2014, 133-140.

DOI: 10.4028/www.scientific.net/kem.598.133

Google Scholar

[3] Lipski A., Lis Z., Temperature Changes Induced by the Portevin-Le Châtelier (PLC) Effect during Tensile Test Based on the Example of CuZn37 Brass. Solid State Phenomena, 224, 2015, 238-243.

DOI: 10.4028/www.scientific.net/ssp.224.238

Google Scholar

[4] Lipski A., Boroński D., Use of Thermography for the Analysis of Strength Properties of Mini-Specimens, Materials Science Forum, 726, 2012, 156-161.

DOI: 10.4028/www.scientific.net/msf.726.156

Google Scholar

[5] Doudard C., Poncelet M., Calloch S., Boue C., Hild F., Galtier A., Determination of an HCF criterion by thermal measurements under biaxial cyclic loading, International Journal of Fatigue, 29 (4), 2007, 748–757.

DOI: 10.1016/j.ijfatigue.2006.06.009

Google Scholar

[6] Poncelet M., Doudard C., Calloch S., Weber B., Hild F., Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue, Journal of Mechanics and Physics of Solids, 58 (4), 2010, 578–593.

DOI: 10.1016/j.jmps.2010.01.003

Google Scholar

[7] Lipski A., Skibicki D., Variations Of The Specimen Temperature Depending On The Pattern Of The Multiaxial Load - Preliminary Research, Materials Science Forum, 726, 2012, 162-168.

DOI: 10.4028/www.scientific.net/msf.726.162

Google Scholar

[8] Skibicki D., Sempruch J., Lipski A., Pejkowski Ł., Fatigue Life, Fractographic and Thermographic Analysis of Steel X2CrNiMo17-12-2 for Proportional and Non-Proportional Loads, The Tenth International Conference on Multiaxial Fatigue & Fracture, Kyoto (Japan), (2013).

DOI: 10.4028/www.scientific.net/msf.726.171

Google Scholar

[9] Ligaj B., Szala G., Comparative analysis of fatigue life calculation methods of C45 steel in conditions of variable amplitude loads in the low- and high-cycle fatigue ranges. Polish Maritime Research, 19 (4), 2012, 23-30.

DOI: 10.2478/v10012-012-0037-z

Google Scholar

[10] Szala G., Ligaj B., Effect of the exponent in the description of Wöhler fatigue diagram on the results of calculations of fatigue life. Key Engineering Materials, 598, 2014, 231-236.

DOI: 10.4028/www.scientific.net/kem.598.231

Google Scholar

[11] Pejkowski Ł., Skibicki D., Sempruch J., High-Cycle Fatigue Behavior of Austenitic Steel and Pure Copper under Uniaxial, Proportional and Non-Proportional Loading. Strojniski Vestnik-Journal Of Mechanical Engineering, 60 (9), 2013, 549-560.

DOI: 10.5545/sv-jme.2013.1600

Google Scholar

[12] Skibicki D., Sempruch J., Pejkowski Ł., Model of non-proportional fatigue load in the form of block load spectrum, Materialwissenschaft Und Werkstofftechnik, 45 (2), 2014, 68-78.

DOI: 10.1002/mawe.201400206

Google Scholar

[13] Tomaszewski T., Sempruch J., Verification of the fatigue test method applied with the use of mini specimen. Key Engineering Materials, 598, 2014, 243-248.

DOI: 10.4028/www.scientific.net/kem.598.243

Google Scholar

[14] Tomaszewski T, Sempruch J., Piątkowski T., Verification of selected models of size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy. Journal of Theoretical and Applied Mechanics. 52 (4), 2014, 883-894.

DOI: 10.15632/jtam-pl.52.4.883

Google Scholar

[15] Collins J.A., Failure of Materials in Mechanical Design - Analysis, Prediction, Prevention. John Wiley & Sons, (1993).

Google Scholar

[16] Lipski A., Determination of Fatigue Limit by Locati Method using S-N Curve Determined by Means of Thermographic Method, Solid State Phenomena, 223, 2015, 362-373.

DOI: 10.4028/www.scientific.net/ssp.223.362

Google Scholar

[17] La Rosa G., Risitano A., Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 22 (1), 2000, 65-73.

DOI: 10.1016/s0142-1123(99)00088-2

Google Scholar

[18] Luong M.P., Infrared thermographic scanning of fatigue in metals. Nuclear Engineering and Design, 158 (2-3), 1995, 363-376.

DOI: 10.1016/0029-5493(95)01043-h

Google Scholar

[19] Luong M.P., Fatigue limit evaluation of metals using an infrared thermographic technique. Mechanics of Materials, 28 (1), 1998, 155–163.

DOI: 10.1016/s0167-6636(97)00047-1

Google Scholar

[20] Cura F., Curti G., Sesana R., A new iteration method for the thermographic determination of fatigue limit in steels. International Journal of Fatigue, 27 (4), 2005, 453-459.

DOI: 10.1016/j.ijfatigue.2003.12.009

Google Scholar

[21] Galietti U., Palumbo D., De Finis R., Ancona F., Fatigue limit evaluation of martensitic steels with thermal methods. The 12th International Conference of Quantitative Infrared Thermography, QIRT, Bordeaux, (2014).

DOI: 10.21611/qirt.2014.105

Google Scholar

[22] Kordatos E.Z., Dassios K.G., Aggelis D.G., Matikas T.E., Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission. Mechanics Research Communications, 54, 2013, 14–20.

DOI: 10.1016/j.mechrescom.2013.09.005

Google Scholar

[23] Li X.D., Zhang H., Wu D.L., Liu X., Liu J.Y., Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress. International Journal of Fatigue, 36 (1), 2012, 18-23.

DOI: 10.1016/j.ijfatigue.2011.09.005

Google Scholar

[24] Fargione G., Geraci A., La Rosa G., Risitano A., Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 24 (1), 2002, 11-19.

DOI: 10.1016/s0142-1123(01)00107-4

Google Scholar

[25] Amiri M., Khonsari M.M., Life prediction of metals undergoing fatigue load based on temperature evolution. Materials Science and Engineering A, 527 (6), 2010, 1555–1559.

DOI: 10.1016/j.msea.2009.10.025

Google Scholar

[26] Amiri M., Khonsari M.M., Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load. International Journal of Fatigue, 32 (2), 2010, 382-389.

DOI: 10.1016/j.ijfatigue.2009.07.015

Google Scholar

[27] Golański G., Mroziński S., Fatigue life of GX12CrMoVNbN9-1 cast steel in the energy-based approach. Advanced Materials Research, 396-398, 2012, 446-449.

DOI: 10.4028/www.scientific.net/amr.396-398.446

Google Scholar

[28] Lipski A., Accelerated Determination of the Fatigue Limit and the S-N Curve by Means of the Thermographic Method for X5CrNi18-10 Steel. 8-th International Symposium on Mechanics of Materials and Structures, May 31 – June 3, 2015, Augustow, Poland.

DOI: 10.1515/ama-2016-0004

Google Scholar

[29] Dixon W.J., Mood A.M., A Method for Obtaining and Analyzing Sensitivity Data, Journal of the American Statistical Association. 43 (241), 1948, 109-126.

DOI: 10.1080/01621459.1948.10483254

Google Scholar