Analysis of Hysteresis Loop on the Basis of Variable-Amplitude Loading

Article Preview

Abstract:

The aim of this paper is to present a method to be used for analysis of stress-strain loops under variable amplitude loading. The method for determination of plastic strain energy parameter ΔWpl consists in determination of envelopes around stress-strain branches (increasing and decreasing) formed in effect of application of a loading program. The method involves development of envelopes to determine energy parameter from the highest (for the highest loading cycle) to the lowest (for the lowest cycle). The paper includes results of stress-strain loop for steel C45.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 250)

Pages:

94-99

Citation:

Online since:

April 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Ellyin, D. Kujawski, Plastic strain energy in fatigue failure, Journal Pressure Vessel Technology, 1984, pp.342-347.

DOI: 10.1115/1.3264362

Google Scholar

[2] K. Gołas, F. Ellyin, A total strain energy theory for cumulative fatigue damage, Journal Pressure Vessel Technology, 1988, pp.35-41.

DOI: 10.1115/1.3265565

Google Scholar

[3] T. Lagoda, Energetyczne modele trwałosci zmeczeniowej materiałow konstrukcyjnych w warunkach jednoosiowych i wieloosiowych obciazen losowych, Studia i monografie nr 121, Wydawnictwo Politechniki Opolskiej, (2001).

Google Scholar

[4] J. Kaleta, Doswiadczalne podstawy formułowania energetycznych hipotez zmeczeniowych, Oficyna Wydawnicza Politechniki Wrocławskiej, (1998).

Google Scholar

[5] B. Ligaj, Effect of stress ratio on the cumulative value of energy dissipation, Trans Tech Publikations, Key Engineering Materials, vol. 598 (2014), pp.125-132.

DOI: 10.4028/www.scientific.net/kem.598.125

Google Scholar

[6] A. Lipski, S. Mrozinski, Approximate determination of a strain-controlled fatigue life curve for aluminum alloy sheets for aircraft structures. International Journal of Fatigue, 2012, 39, pp.2-7.

DOI: 10.1016/j.ijfatigue.2011.08.007

Google Scholar

[7] S. Mrozinski, Stabilization of cyclic properties in metals and its influence on fatigue life, (in Polish), Monographs nr 128, Publishing house University of Science and Technology, Bydgoszcz, (2008).

Google Scholar

[8] L. Pejkowski, D. Skibicki, J. Sempruch, High-Cycle Fatigue Behavior of Austenitic Steel and Pure Copper under Uniaxial, Proportional and Non-Proportional Loading, Strojniski Vestnik- Journal of Mechanical Engineering, vol.: 60 (2013), pp.549-560.

DOI: 10.5545/sv-jme.2013.1600

Google Scholar

[9] G. Szala, Comments on linear summation hypothesis of fatigue failures, Polish Maritime Research, vol.: 21 (2014), pp.77-85.

DOI: 10.2478/pomr-2014-0033

Google Scholar

[10] G. Szala, B. Ligaj, Description of cyclic properties of steel in variability conditions of mean values and amplitudes of loading cycles, Fatigue Failure and Fracture Mechanics, Book series: Materials Science Forum, vol.: 726 (2012), pp.69-76.

DOI: 10.4028/www.scientific.net/msf.726.69

Google Scholar

[11] J. Szala, Hypotheses of fatigue damage accumulation, (in Polish), Monographs, University of Technology and Agriculture, Bydgoszcz (1998).

Google Scholar

[12] T. Tomaszewski, J. Sempruch, Verification of the fatigue test method applied with the use of mini specimen, Fracture and Fatigue of Materials and Structures, Book series: Key Engineering Materials, vol.: 598 (2014), pp.243-248.

DOI: 10.4028/www.scientific.net/kem.598.243

Google Scholar

[13] B. Ligaj, G. Szala, Hybrid Calculation Method of Fatigue Life, (in Polish), Monographs, Publishing house Institute for Sustainable Technologies – National Research Institute, Radom, (2013).

Google Scholar