[1]
M. Zappalorto, F. Berto, P. Lazzarin, Practical expressions for the notch stress concentration factors of round bars under torsion, Int. J. Fatigue 33 (2011) 382-395.
DOI: 10.1016/j.ijfatigue.2010.09.016
Google Scholar
[2]
D. Rozumek, Z. Marciniak, The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading. Int. J. of Fatigue 39 (2012) 81-87.
DOI: 10.1016/j.ijfatigue.2011.02.013
Google Scholar
[3]
K. Werner, The fatigue crack growth rate and crack opening displacement in 18G2A-steel under tension, Int. Journal of Fatigue 39 (2012) 25-31.
DOI: 10.1016/j.ijfatigue.2011.06.005
Google Scholar
[4]
L.P. Pook, The fatigue crack direction and threshold behavior of mild steel under mixed mode I and III loading, Int. J. Fatigue 7 (1985) 21-30.
DOI: 10.1016/0142-1123(85)90004-0
Google Scholar
[5]
J. Qian, A. Fatemi, Mixed Mode Fatigue Crack Growth, A Literature Survey, Eng. Fracture Mechanics 55 (1996) 969-990.
DOI: 10.1016/s0013-7944(96)00071-9
Google Scholar
[6]
A. Thum, C. Petersen, O. Swenson, Verformung, Spannung und Kerbwirkung, VDI, Duesseldorf (1960).
Google Scholar
[7]
D. Rozumek, Z. Marciniak, Fatigue crack growth in AlCu4Mg1 under non-proportional bending with torsion loading, Materials Science 46 (2011) 685-694.
DOI: 10.1007/s11003-011-9341-5
Google Scholar
[8]
D. Rozumek, M. Hepner, S. Faszynka, Influence of the titanium and its alloys microstructure on the fatigue crack paths, Key Engineering Materials 592-593 (2014) 692-695.
DOI: 10.4028/www.scientific.net/kem.592-593.692
Google Scholar
[9]
P. Jastrzębski, J. Mutermilch, W. Orłowski, Strength of materials, Arkady, Warsaw, 1985 (in Polish).
Google Scholar
[10]
S. Faszynka, D. Rozumek, J. Lewandowski, Crack growth path in specimens with rectangular section under bending with torsion, Solid State Phenomena 224 (2015) 133-138.
DOI: 10.4028/www.scientific.net/ssp.224.133
Google Scholar