Review of Ultrasonic Signal Acquisition and Processing Techniques for Mechatronics and Material Engineering

Article Preview

Abstract:

Review of ultrasound applications in mechanical and material engineering is presented. Application examples in material thickness, profile measurement are given. Applications for load, stress, stiffness, porosity, density, viscosity, bond strength, hardening depth evaluation are discussed. Composite or polymer curing states can be monitored. Ultrasonic signal propagation velocity, attenuation or nonlinearity can be used for aforementioned parameters extraction. Signal acquisition setup configurations along with signal processing techniques are discussed. Ultrasound can be used for structure integrity testing or monitoring. Imaging of the inner material structure or properties distribution requires special reconstruction techniques. Presence of the structural noise is masking the defects. Image reconstruction and structural noise reduction techniques are outlined.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 251)

Pages:

68-74

Citation:

Online since:

July 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Edwards, S. Dixon, X. Jian, Depth gauging of defects using low frequency wideband Rayleigh waves, Ultrasonics 44(1) (2006) 93-98.

DOI: 10.1016/j.ultras.2005.08.005

Google Scholar

[2] P.D. Wilcox, et al., Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 52(4) (2005) 653-665.

DOI: 10.1109/tuffc.2005.1428048

Google Scholar

[3] F. B. Cegla, P. Cawley, J. Allin, et al., High-Temperature (> 500 degrees C) Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Transducers, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 58(1) (2011) 156-167.

DOI: 10.1109/tuffc.2011.1782

Google Scholar

[4] A. Nadeau, et al., Application of laser-ultrasonics to the noncontact, pulse echo measurement of the thickness of micron thin metallic coatings, RPQNDE, 894 (2007) 225-230.

DOI: 10.1063/1.2717977

Google Scholar

[5] T. Kundu, Acoustic source localization, Ultrasonics, 54 (1) (2014) 25-38.

Google Scholar

[6] T.J. Robertson, DA Hutchins, DR Billson, et al., Surface metrology using reflected ultrasonic signals in air, Ultrasonics 39(7) (2002) 479-486.

DOI: 10.1016/s0041-624x(01)00086-5

Google Scholar

[7] D. Clifton, A.R. Mount, G.M. Alder, D. Jardine, Ultrasonic measurement of the inter-electrode gap in electrochemical machining, Int. J. of Mach. Tool. Manu. 42(11) (2002) 1259-1267.

DOI: 10.1016/s0890-6955(02)00041-x

Google Scholar

[8] M. Duquennoy, et al., Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves, NDT & E int. 32(4) (1999) 189-199.

DOI: 10.1016/s0963-8695(98)00046-2

Google Scholar

[9] A. Palevicius, E. Dragasius, R. Bansevicius, M. Ragulskis, Development of smart piezoceramic transducers for detection of solidification in composite materials, Proc. SPIE 5384, Smart Structures and Materials 2004: 71 (2004) 71-79.

DOI: 10.1117/12.539122

Google Scholar

[10] T. Goursolle, et al., Ultrasonic parametric imaging of metallic samples using nonlinear acoustic measurements, Joint Workshop of RAS and SFA, (2005) 120-128.

Google Scholar

[11] C. L. E. Bruno, A. S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method, Physical Review B, 79 (2009) 064108 1-13.

DOI: 10.1103/physrevb.79.064108

Google Scholar

[12] B. Hilloulin, et al., Small crack detection in cementitious materials using nonlinear coda wave modulation, NDT&E International, 68 (2014) 98–104.

DOI: 10.1016/j.ndteint.2014.08.010

Google Scholar

[13] M Scalerandi, et al., Nonlinear acoustic time reversal imaging using the scaling subtraction method, J. Phys. D: Appl. Phys. 41 (2008) 215404.

DOI: 10.1088/0022-3727/41/21/215404

Google Scholar

[14] S. Hoche, et al., Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method, Ultrasonics 57 (2015) 65–71.

DOI: 10.1016/j.ultras.2014.10.017

Google Scholar

[15] T. E. Gómez Álvarez-Arenas, Air-coupled ultrasonic spectroscopy for the study of membrane filtres, Journal of Membrane Science 213 (2003) 195–207.

DOI: 10.1016/s0376-7388(02)00527-6

Google Scholar

[16] R. Kazys et al., Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves, Ultrasonics 54 (2014) 1104–1112.

DOI: 10.1016/j.ultras.2014.01.007

Google Scholar

[17] M. Castaings, SH ultrasonic guided waves for the evaluation of interfacial adhesion, Ultrasonics, 54(7) (2014) 1760-1775.

DOI: 10.1016/j.ultras.2014.03.002

Google Scholar

[18] J. San Emeterio, A. Ramos, P. Sanz, A. Ruiz, Evaluation of impedance matching schemes for pulse-echo ultrasonic piezoelectric transducers, Ferroelectrics 273(1) (2002) 297-302.

DOI: 10.1080/713716348

Google Scholar

[19] L. Svilainis, et al., Comparison of Spread Spectrum and Pulse Signal Excitation for Split Spectrum Techniques Composite Imaging, IOP Conf. Ser.: Mater. Sci. Eng. 42 (2012) 012007.

DOI: 10.1088/1757-899x/42/1/012007

Google Scholar

[20] L. Svilainis, Review of high resolution time of flight estimation techniques for ultrasonic signals, In Proc. BINDT 2013, Telford 1-12.

Google Scholar

[21] A. Chaziachmetovas, L. Svilainis, D. Kybartas, A. Aleksandrovas, D. Liaukonis, Evaluation of material nonlinearities using rectangular pulse trains for excitation, Physics Procedia (2015).

DOI: 10.1016/j.phpro.2015.08.026

Google Scholar

[22] L. Svilainis, et al., Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain, Measurements, 46(10) (2013) 3950–3958.

DOI: 10.1016/j.measurement.2013.07.038

Google Scholar

[23] L. Svilainis, V. Dumbrava, A. Aleksandrovas, et al., Application of Iterative Deconvolution Technique for Ultrasonic Imaging, Sensor Letters, 12(2014) 1572-1582.

DOI: 10.1166/sl.2014.3370

Google Scholar

[24] L. Svilainis, et al., Comparison of conventional and spread spectrum signals application in thin PCB imaging, In Proc. ECNDT 2014, Prague, 1-9.

Google Scholar

[25] C. E. Corcione, F. Freuli, M. Frigione, Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness, Materials 7(2014) 6832-6842.

DOI: 10.3390/ma7096832

Google Scholar

[26] F. Lionetto, A. Maffezzoli, Monitoring the Cure State of Thermosetting Resins by Ultrasound, Materials 6 (2013) 3783-3804.

DOI: 10.3390/ma6093783

Google Scholar

[27] L. Svilainis, T. E. Gomez Alvarez-Arenas, et al., Comparison between time and frequency domain ToF estimators for signals in close proximity, Physics Procedia 70 (2015) 574-577.

DOI: 10.1016/j.phpro.2015.08.024

Google Scholar

[28] A. Rodriguez, et al., Split Spectrum Processing Applications for New Composite Materials Imaging, In Proc. IEEE IUS, Dresden, 2012, 1473-1476.

Google Scholar