[1]
R.S. Edwards, S. Dixon, X. Jian, Depth gauging of defects using low frequency wideband Rayleigh waves, Ultrasonics 44(1) (2006) 93-98.
DOI: 10.1016/j.ultras.2005.08.005
Google Scholar
[2]
P.D. Wilcox, et al., Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 52(4) (2005) 653-665.
DOI: 10.1109/tuffc.2005.1428048
Google Scholar
[3]
F. B. Cegla, P. Cawley, J. Allin, et al., High-Temperature (> 500 degrees C) Wall Thickness Monitoring Using Dry-Coupled Ultrasonic Waveguide Transducers, IEEE Trans. Ultrason. Ferroelect. Freq. Control, 58(1) (2011) 156-167.
DOI: 10.1109/tuffc.2011.1782
Google Scholar
[4]
A. Nadeau, et al., Application of laser-ultrasonics to the noncontact, pulse echo measurement of the thickness of micron thin metallic coatings, RPQNDE, 894 (2007) 225-230.
DOI: 10.1063/1.2717977
Google Scholar
[5]
T. Kundu, Acoustic source localization, Ultrasonics, 54 (1) (2014) 25-38.
Google Scholar
[6]
T.J. Robertson, DA Hutchins, DR Billson, et al., Surface metrology using reflected ultrasonic signals in air, Ultrasonics 39(7) (2002) 479-486.
DOI: 10.1016/s0041-624x(01)00086-5
Google Scholar
[7]
D. Clifton, A.R. Mount, G.M. Alder, D. Jardine, Ultrasonic measurement of the inter-electrode gap in electrochemical machining, Int. J. of Mach. Tool. Manu. 42(11) (2002) 1259-1267.
DOI: 10.1016/s0890-6955(02)00041-x
Google Scholar
[8]
M. Duquennoy, et al., Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves, NDT & E int. 32(4) (1999) 189-199.
DOI: 10.1016/s0963-8695(98)00046-2
Google Scholar
[9]
A. Palevicius, E. Dragasius, R. Bansevicius, M. Ragulskis, Development of smart piezoceramic transducers for detection of solidification in composite materials, Proc. SPIE 5384, Smart Structures and Materials 2004: 71 (2004) 71-79.
DOI: 10.1117/12.539122
Google Scholar
[10]
T. Goursolle, et al., Ultrasonic parametric imaging of metallic samples using nonlinear acoustic measurements, Joint Workshop of RAS and SFA, (2005) 120-128.
Google Scholar
[11]
C. L. E. Bruno, A. S. Gliozzi, M. Scalerandi, P. Antonaci, Analysis of elastic nonlinearity using the scaling subtraction method, Physical Review B, 79 (2009) 064108 1-13.
DOI: 10.1103/physrevb.79.064108
Google Scholar
[12]
B. Hilloulin, et al., Small crack detection in cementitious materials using nonlinear coda wave modulation, NDT&E International, 68 (2014) 98–104.
DOI: 10.1016/j.ndteint.2014.08.010
Google Scholar
[13]
M Scalerandi, et al., Nonlinear acoustic time reversal imaging using the scaling subtraction method, J. Phys. D: Appl. Phys. 41 (2008) 215404.
DOI: 10.1088/0022-3727/41/21/215404
Google Scholar
[14]
S. Hoche, et al., Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method, Ultrasonics 57 (2015) 65–71.
DOI: 10.1016/j.ultras.2014.10.017
Google Scholar
[15]
T. E. Gómez Álvarez-Arenas, Air-coupled ultrasonic spectroscopy for the study of membrane filtres, Journal of Membrane Science 213 (2003) 195–207.
DOI: 10.1016/s0376-7388(02)00527-6
Google Scholar
[16]
R. Kazys et al., Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves, Ultrasonics 54 (2014) 1104–1112.
DOI: 10.1016/j.ultras.2014.01.007
Google Scholar
[17]
M. Castaings, SH ultrasonic guided waves for the evaluation of interfacial adhesion, Ultrasonics, 54(7) (2014) 1760-1775.
DOI: 10.1016/j.ultras.2014.03.002
Google Scholar
[18]
J. San Emeterio, A. Ramos, P. Sanz, A. Ruiz, Evaluation of impedance matching schemes for pulse-echo ultrasonic piezoelectric transducers, Ferroelectrics 273(1) (2002) 297-302.
DOI: 10.1080/713716348
Google Scholar
[19]
L. Svilainis, et al., Comparison of Spread Spectrum and Pulse Signal Excitation for Split Spectrum Techniques Composite Imaging, IOP Conf. Ser.: Mater. Sci. Eng. 42 (2012) 012007.
DOI: 10.1088/1757-899x/42/1/012007
Google Scholar
[20]
L. Svilainis, Review of high resolution time of flight estimation techniques for ultrasonic signals, In Proc. BINDT 2013, Telford 1-12.
Google Scholar
[21]
A. Chaziachmetovas, L. Svilainis, D. Kybartas, A. Aleksandrovas, D. Liaukonis, Evaluation of material nonlinearities using rectangular pulse trains for excitation, Physics Procedia (2015).
DOI: 10.1016/j.phpro.2015.08.026
Google Scholar
[22]
L. Svilainis, et al., Subsample interpolation bias error in time of flight estimation by direct correlation in digital domain, Measurements, 46(10) (2013) 3950–3958.
DOI: 10.1016/j.measurement.2013.07.038
Google Scholar
[23]
L. Svilainis, V. Dumbrava, A. Aleksandrovas, et al., Application of Iterative Deconvolution Technique for Ultrasonic Imaging, Sensor Letters, 12(2014) 1572-1582.
DOI: 10.1166/sl.2014.3370
Google Scholar
[24]
L. Svilainis, et al., Comparison of conventional and spread spectrum signals application in thin PCB imaging, In Proc. ECNDT 2014, Prague, 1-9.
Google Scholar
[25]
C. E. Corcione, F. Freuli, M. Frigione, Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness, Materials 7(2014) 6832-6842.
DOI: 10.3390/ma7096832
Google Scholar
[26]
F. Lionetto, A. Maffezzoli, Monitoring the Cure State of Thermosetting Resins by Ultrasound, Materials 6 (2013) 3783-3804.
DOI: 10.3390/ma6093783
Google Scholar
[27]
L. Svilainis, T. E. Gomez Alvarez-Arenas, et al., Comparison between time and frequency domain ToF estimators for signals in close proximity, Physics Procedia 70 (2015) 574-577.
DOI: 10.1016/j.phpro.2015.08.024
Google Scholar
[28]
A. Rodriguez, et al., Split Spectrum Processing Applications for New Composite Materials Imaging, In Proc. IEEE IUS, Dresden, 2012, 1473-1476.
Google Scholar