Macroscopic Evaluation of Fracture Processes in Fly Ash Concrete

Article Preview

Abstract:

This paper presents the results of Mode I fracture toughness tests of concrete with fly ash (FA) loaded in Mode I. Concrete composites with the addition of 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on a MTS 810 testing machine. The studies examined the effect of FA additive on the quasi-static fracture toughness KIcS. The analysis of the results revealed that a 20% FA additive causes an increase of KIcS value, while a 30% FA additive causes a decrease on fracture toughness. Additionally, the results demonstrate the possibilities of practical application of ARAMIS system for analysing the development of defects in the micro-structure of concretes containing FA additives. This system can be useful for macroscopic estimation of crack propagation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 254)

Pages:

188-193

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Meyer, The greening of the concrete industry, Cem. Concr. Com. 31 (2009) 601-605.

Google Scholar

[2] P. C. Aitcin, Cements of yesterday and today. Concrete of tomorrow, Cem. Concr. Res. 30 (2000) 1349-1359.

Google Scholar

[3] G. L. Golewski, Studies of natural radioactivity of concrete with siliceous fly ash addition, Cement-Wapno-Beton [Cement-Lime-Concrete] 2 (2015) 106-114.

Google Scholar

[4] T. Sadowski, G. L. Golewski, Effect of aggregate kind and graining on modeling of plain concrete under compression, Comput. Mater. Sci. 43 (2008) 119-126.

DOI: 10.1016/j.commatsci.2007.07.037

Google Scholar

[5] G. L. Golewski, T. Sadowski, An analysis of shear fracture toughness and microstructure in concretes containing fly-ash, Constr. Build. Mater. 51 (2014) 207-214.

DOI: 10.1016/j.conbuildmat.2013.10.044

Google Scholar

[6] G. L. Golewski, T. Sadowski, Experimental investigation and numerical modelling fracture processes under Mode II in concrete composites containing fly-ash additive at early age, Sol. Stat. Phenom. 188 (2012) 158-163.

DOI: 10.4028/www.scientific.net/ssp.188.158

Google Scholar

[7] G. L. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method, Comput. Mater. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[8] L. Lam, Y. L. Wong, C. S. Poon, Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cem. Concr. Res. 28 (1998) 271-283.

DOI: 10.1016/s0008-8846(97)00269-x

Google Scholar

[9] B. H. Bharatkumar, B. K. Raghuprasad, D. S. Ramachandramurthy, R. Narayanan, S. Gopalakrishnan, Effect of fly ash and slag on the fracture characteristics of high performance concrete, Mater. Struct. 38 (2005) 63-72.

DOI: 10.1007/bf02480576

Google Scholar

[10] W. C. Tang, T. Y. Lo, W. K. Chan, Fracture properties of normal and lightweight high-strength concrete, Mag. Concr. Res. 60 (2008) 237-244.

DOI: 10.1680/macr.2008.60.4.237

Google Scholar

[11] E. Vejmelkova et. al., Fly ash influence on the properties of high performance concrete, Cement-Wapno-Beton [Cement-Lime-Concrete] 4 (2009) 189-204.

DOI: 10.32047/cwb.2021.26.5.3

Google Scholar

[12] J. Roesler, G. H. Paulino, K. Park, C. Gaedicke, Concrete fracture prediction using bilinear softening, Cem. Concr. Com. 29 (2007) 300-312.

DOI: 10.1016/j.cemconcomp.2006.12.002

Google Scholar

[13] J. Konkol, G. Prokopski, The influence of the age of concretes with FBC fly ash or metakaolinite additives on their strength properties, Roads Bridges 13 (2014) 49-67.

DOI: 10.7409/rabdim.014.004

Google Scholar

[14] T. Voiconi, E. Linul, L. Marsavina, T. Sadowski, M. Kneć, Determination of flexular properties of rigid PUR foams using digital image correlation, Sol. Stat. Phenom. 216 (2014) 116-121.

DOI: 10.4028/www.scientific.net/ssp.216.116

Google Scholar

[15] Determination of fracture parameters (KIc and CTODc) of plain concrete using three-point bend tests. RILEM Draft Recommendations, TC 89-FMT Fracture Mechanics of Concrete Test Methods, Mater. Struct. 23 (1990) 457-460.

DOI: 10.1007/bf02472029

Google Scholar

[16] G. V. Guinea, J. Planas, M. Elices, Measurement of the fracture energy using three point bend tests: Part 1–Influence of experimental procedures, Mater. Struct. 25 (1992) 212-218.

DOI: 10.1007/bf02473065

Google Scholar

[17] M. Elices, G. V. Guinea, J. Planas, , On the measurement of concrete the fracture energy using three point bend tests, Mater. Struct. 30 (1997) 375-376.

DOI: 10.1007/bf02480689

Google Scholar

[18] G. Prokopski, B. Langier, Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes, Cem. Conc. Res. 30 (2000) 1427-1433.

DOI: 10.1016/s0008-8846(00)00332-x

Google Scholar

[19] Z. Wu, H. Rong, J. Zheng, F. Xu, W. Dong, An experimental investigation on the FPZ properties in concrete using digital image correlation technique, Eng. Fract. Mech. 78 (2011) 2978-2990.

DOI: 10.1016/j.engfracmech.2011.08.016

Google Scholar

[20] Ł. Skarżyński, E. Syroka, J. Tejchman, Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams, Strain, 47 (2011) e319-e332.

DOI: 10.1111/j.1475-1305.2008.00605.x

Google Scholar

[21] S. Y. Alam, J. Saliba, A. Loukili, Fracture examination in concrete through combined digital image correlation and acoustic emission techniques, Constr. Build. Mater. 69 (2014) 232-242.

DOI: 10.1016/j.conbuildmat.2014.07.044

Google Scholar

[22] A. Bascoul, A. Turatsinze, Microstructural characterization of mode I crack opening in mortar, Mater. Struct. 27 (1994) 71-78.

DOI: 10.1007/bf02472824

Google Scholar

[23] T. Sadowski, Modelling of semi-brittle ceramic behaviour under compression state, Mech. Mater. 18 (1994) 1-16.

Google Scholar

[24] G. Golewski, T. Sadowski, Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates, In: The Eight International Symposium on Brittle Matrix Composites, 2006 537-546.

DOI: 10.1533/9780857093080.537

Google Scholar

[25] G. Golewski, T. Sadowski, Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym [The role of coarse aggregate in failure process of concrete composites subjected short-time loads], IZT, Lublin, 2008 (in Polish).

Google Scholar

[26] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites, Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[27] T. Sadowski, Gradual degradation in two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012), 209-211.

DOI: 10.1016/j.commatsci.2012.01.034

Google Scholar

[28] E. Postek, T. Sadowski, Assessing the influence of porosity in the deformation of metal-ceramic composites, Comp. Inter. 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[29] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comp. Mater. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[30] T. Sadowski, S. Samborski, Modelling of porous ceramics response to compressive loading, J. Am. Cer. Soc. 86 (2003) 2218-2221.

DOI: 10.1111/j.1151-2916.2003.tb03637.x

Google Scholar

[31] M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, J. Therm. Str. 36 (2013) 1-38.

DOI: 10.1080/01495739.2013.764802

Google Scholar

[32] T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. Civ. Mech. Eng. 15 (2015) 1180-1192.

DOI: 10.1016/j.acme.2014.09.004

Google Scholar

[33] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Compos. Struct. 143 (2016) 388-394.

DOI: 10.1016/j.compstruct.2016.02.022

Google Scholar