The Deformation Process of Thin-Walled Box Beams Joined by Rivets under Three-Point Bending

Article Preview

Abstract:

This paper is focused on description of the mechanical response of the aluminum box-beams subjected to 3 point bending (3-PB). The main aim of this paper is to determine the effect of spacing between rivets on the equivalent stiffness and strength of the analised profile. The considered beams are composed of two sections: one of them is an aluminum omega profile and another is a composite flat sheet. Experimental tests were carried out for various spacing between rivets. Moreover, the corresponding numerical analyses by Finite Element Analysis (FEA) with application of the Abaqus software were done for estimate of the mechanical response of the box beams. The results show relationship between spacing of the rivets and values of carrying forces.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 254)

Pages:

283-289

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A.A. Alghamdi. Collapsible impact energy absorbers: an Overview. Thin-Walled Structures 39 (2001) 189–213.

DOI: 10.1016/s0263-8231(00)00048-3

Google Scholar

[2] G. Belingardi, A. Scattina. Experimental investigation on the bending behavior of hybrid and steel thin walled box beams – The role of adhesive joints. International Journal of Adhesion & Adhesives 40, 31-37 (2013).

DOI: 10.1016/j.ijadhadh.2012.08.002

Google Scholar

[3] M. Yamashita, H. Kenmotsu, T. Hattori. Dynamic crush behavior of adhesive-bonded aluminum tubular structure—Experiment and numerical simulation. Thin-WalledStructures69(2013)45–53.

DOI: 10.1016/j.tws.2013.04.005

Google Scholar

[4] E. Rusi´nskia, A. Kopczy´nski, J. Czmochowski. Tests of thin-walled beams joined by spot welding. Journal of Materials Processing Technology 157–158 (2004) 405–409.

DOI: 10.1016/j.jmatprotec.2004.09.063

Google Scholar

[5] C. Liu, J.X. Zhang, C.B. Xue. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes. Fusion Engineering and Design 86 (2011) 288–295.

DOI: 10.1016/j.fusengdes.2011.01.116

Google Scholar

[6] D. Fu, C. Zhou, C. Li, G. Wang, L. Li. Effect of welding sequence on residual stress in thin-walled octagonal pipe−plate structure. Trans. Nonferrous Met. Soc. China 24(2014) 657−664.

DOI: 10.1016/s1003-6326(14)63108-3

Google Scholar

[7] T. Balawender, T. Sadowski, P. Golewski. Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension. Computational Materials Science 64 (2012) 270–272.

DOI: 10.1016/j.commatsci.2012.05.014

Google Scholar

[8] T. Balawender, T. Sadowski, P. Golewski. Technological aspects of manufacturing and numerical model ling of clinch-adhesive joint, Springer Brief in Applied Sciences and Technlogy, (2015).

DOI: 10.1007/978-3-319-14902-8_1

Google Scholar

[9] T. Balawender, T. Sadowski, M. Knec, Technological problems and experimental investigations of hybrid: clinched-adhesively bonded joint", Arch. Metallurgy and Mat. 56 (2011) 439-446.

DOI: 10.2478/v10172-011-0047-3

Google Scholar

[10] T. Balawender, T. Sadowski, P. Golewski Experimental and numerical analysis of hybrid clinched – adhesive joints. J. Adhesive Sci. and Technology 25 (2011) 2391-2407.

Google Scholar

[11] Z. Kaifu, C. Hui, L. Yuan. Riveting Process Modeling and Simulating for Deformation Analysis of Aircraft's Thin-walled Sheet-metal Parts. Chinese Journal of Aeronautics 24 (2011) 369-377.

DOI: 10.1016/s1000-9361(11)60044-7

Google Scholar

[12] J. Min, Y. Li, B.E. Carlson, S Hu, J. Li, J. Linv. A new single-sided blind riveting method for joining dissimilar materials. CIRP Annals - Manufacturing Technology 64 (2015) 13–16.

DOI: 10.1016/j.cirp.2015.04.047

Google Scholar

[13] T. Sadowski, M. Kneć, P. Golewski. Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets. International Journal of Adhesion & Adhesives 30, 338-346 (2010).

DOI: 10.1016/j.ijadhadh.2009.11.004

Google Scholar

[14] T. Sadowski, P. Golewski, M. Kneć. Experimental investigation and numerical modelling of spot welding–adhesive joints response. Composite Structures 112, 66-77 (2014).

DOI: 10.1016/j.compstruct.2014.01.008

Google Scholar

[15] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets. Comp. Mater. Sci. 50 (2011) 1256-1262.

DOI: 10.1016/j.commatsci.2010.06.022

Google Scholar

[16] T. Sadowski, M. Kneć. Application of DIC technique for monitoring of deformation process of SPR hybrid joints. Archives of Metallurgy and Materials 58 (2013) 119-125.

DOI: 10.2478/v10172-012-0161-x

Google Scholar

[17] T. Sadowski, L. Marsavina, Multiscale modelling of Two-phase Ceramic Matrix Composites, Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[18] T. Sadowski, T. Balawender, R. Sliwa, M. Kneć, P. Golewski, Modern hybrid joints in aerospace: modeling and testing, Archives of Metallurgy and Materials 58 (2013) 163-169.

DOI: 10.2478/v10172-012-0168-3

Google Scholar

[19] T. Sadowski, M. Kneć, P. Golewski, Spot welding-adhesive joints: modelling and testing. J. Adhesion 90 (2014) 346-364.

DOI: 10.1080/00218464.2013.766599

Google Scholar

[20] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[21] Q. Liu, H. Xing, Y. Ju, Z. Ou, Q. Li. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes. Composite Structures 117 (2014) 1–11.

DOI: 10.1016/j.compstruct.2014.06.024

Google Scholar

[22] M. Kotelko, T.H. Lim, J. Rhodes. Post-failure behavior of box section beams under pure bending (an experimental study). Thin-Walled Structures 38, 179-194 (2000).

DOI: 10.1016/s0263-8231(00)00032-x

Google Scholar

[23] M. Kotełko. Load-capacity estimation and collapse analysis of thin-walled beams and columns – recent advances. Thin-Walled Structures 42, 153-175 (2004).

DOI: 10.1016/s0263-8231(03)00055-7

Google Scholar

[24] M. Elchalakani. Plastic collapse analysis of CFRP strengthened and rehabilitated degraded steel welded RHS beams subjected to combined bending and bearing. Thin-Walled Structures 82 (2014) 278–295.

DOI: 10.1016/j.tws.2014.05.002

Google Scholar

[25] Abaqus 6. 11 Analysis User`s Manual. 30. 2. 6 Connector plastic behavior.

Google Scholar

[26] Abaqus 6. 11 Analysis User`s Manual. 15. 9. 7 Connector section.

Google Scholar

[27] G. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[28] J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64 (2012), 168-172.

DOI: 10.1016/j.commatsci.2012.03.033

Google Scholar