Rheological Properties of Liquid Metals and Semisolid Materials at Low Solid Fraction

Article Preview

Abstract:

Rheological properties of liquid metals are difficult to investigate experimentally because of the extreme border conditions to consider. One difficulty is related to the low viscosity of liquid metals. Surface tension effects can cause forces that can be considerably higher than the viscous forces in the liquid metals. Evaluating the experimental data without considering these effects leads to an apparent shear thinning behavior of the material. In the present study, experiments were performed by means of a Searle rheometer changing the dimension of the measuring system with metals of high surface tension, as mercury and tin. It became evident that surface tension plays a significant role in the effects that falsify measurements at low shear rate. Conclusions can be drawn to what extent measurements of semi-solid metals are affected.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

133-138

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Macosko, Rheology: Principles, Measurements and Applications, Wiley-VCH Publishers, New York, (1994).

Google Scholar

[2] T. Iida, R.I.L. Guthrie, The physical properties of liquid metals, Clarendon Press, Oxford, (1988).

Google Scholar

[3] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications, Butterworth Heinemann, (1999).

Google Scholar

[4] A.T. Dinsdale, P.N. Quested, The viscosity of aluminium and its alloys - A review of data and models, J. Mat. Sci. 39 (2004) 7221-7228.

DOI: 10.1023/b:jmsc.0000048735.50256.96

Google Scholar

[5] M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, W.A. Wakeham, Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc, J. Phys. Chem. Ref. Data 41, 3 (2012) 1-16.

DOI: 10.1063/1.4729873

Google Scholar

[6] V. Varsani, Z. Fan, Non-Newtonian behaviour of liquid metals, T. Indian I. Metals 60, 2-3 (2007) 251-256.

Google Scholar

[7] Y. Qi, T. Çain, Y. Kimura, W.A. Goddard III, Viscosities of liquid metal alloys from nonequilibrium molecular dynamics, J. Comput. Aided Mater. Des. 8 (2001) 233-243.

Google Scholar

[8] M.M. Malik, M. Jeyakumar, M.S. Hamed, M.J. Walker, S. Shankar, Rotational rheometry of liquid metal systems: Measurement geometry selection and flow curve analysis, J. Non-Newtonian Fluid Mech. 165 (2010) 733–742.

DOI: 10.1016/j.jnnfm.2010.03.009

Google Scholar

[9] M. Jeyakumar, M. Hamed, S. Shankar, Rheology of liquid metals and alloys, J. Non Newtonian Fluid Mech. 166 (2011) 831–838.

DOI: 10.1016/j.jnnfm.2011.04.014

Google Scholar

[10] M.T. Johnston, R.H. Ewoldt, Precision rheometry: Surface tension effects on low-torque measurements in rotational rheometers, J. Rheol. 57, 6 (2013) 1515-1532.

DOI: 10.1122/1.4819914

Google Scholar

[11] T. G Nguyen, D. Favier, M. Suery, Theoretical and experimental study of the isothermal mechanical behaviour of alloys in the semi-solid state, Int. J. Plasticity 10, 6 (1994) 663-693.

DOI: 10.1016/0749-6419(94)90028-0

Google Scholar

[12] J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys, J. Non-Newtonian Fluid Mech. 112 (2003) 141-160.

DOI: 10.1016/s0377-0257(03)00080-6

Google Scholar

[13] A. Pola, R. Roberti, M. Modigell, L. Pape. Rheological characterization of a new alloy for thixoforming. Sol. St. Phen. 141-143 (2008) 301-306.

DOI: 10.4028/www.scientific.net/ssp.141-143.301

Google Scholar

[14] H. Bettin, H. Fehlauer, Density of mercury – measurements and reference values, Metrologia 41 (2004) 16-23.

DOI: 10.1088/0026-1394/41/2/s02

Google Scholar

[15] M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, W.A. Wakeham, Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin, J. Phys. Chem. Ref. Data 39 (2010) 1-8.

DOI: 10.1063/1.3467496

Google Scholar