A Potential in Thermoelectric Oxide Phononic Crystal

Article Preview

Abstract:

The high performance thermoelectric materials consist of heavy atoms due to their low thermal conductivity. However, the atomic properties have limited the thermoelectric power. The paper suggests that oxide may change the situation with a phononic crystal structure to inhibit heat transport.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

156-159

Citation:

Online since:

October 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.

Google Scholar

[2] T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory, Rev. Mod. Phys. 86 (2014) 669-716.

DOI: 10.1103/revmodphys.86.669

Google Scholar

[3] C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features, Adv. Mater. 22 (2010) 3970-3980.

DOI: 10.1002/adma.201000839

Google Scholar

[4] M.W. Gaultois, T.D. Sparks, How much improvement in thermoelectric performance can come from reducing thermal conductivity?, Appl. Phys. Lett. 104 (2014) 113906.

DOI: 10.1063/1.4869232

Google Scholar

[5] C.B. Vining, An inconvenient truth about thermoelectrics, Nat. Mater. 8 (2009) 83-85.

Google Scholar

[6] H. -S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement, APL Mat. 3 (2015) 041506.

DOI: 10.1063/1.4908244

Google Scholar

[7] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Data-driven review of thermoelectric materials: Performance and resource considerations, Chem. Mater. 25 (2013) 2911-2920.

DOI: 10.1021/cm400893e

Google Scholar

[8] H.J. Goldsmid, J.W. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements, J. Electron. Mater. 28 (1999) 869-872.

DOI: 10.1007/s11664-999-0211-y

Google Scholar

[9] L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, 47 (1993) 12727-12731.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[10] L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, 47 (1993) 16631-16634.

DOI: 10.1103/physrevb.47.16631

Google Scholar

[11] M. Maldovan, Sound and heat revolutions in phononics, Nature, 503 (2013) 209-217.

DOI: 10.1038/nature12608

Google Scholar

[12] L. Yang, N. Yang, B. Li, Reduction of thermal conductivity by nanoscale 3D phononic crystal, Sci Rep. 3 (2013) 1143.

DOI: 10.1038/srep01143

Google Scholar

[13] L. Yang, N. Yang, B. Li, Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores, Nano Lett., 14 (2014) 1734-1738.

DOI: 10.1021/nl403750s

Google Scholar

[14] G. Chen, ‪Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons‬, Oxford University Press, Inc., New York, 2005. ‬‬‬‬‬.

Google Scholar

[15] Y. Xu, M. Goto, R. Kato, Y. Tanaka, Y. Kagawa, Thermal conductivity of ZnO thin film produced by reactive sputtering. J. Appl. Phys. 111 (2012) 084320.

DOI: 10.1063/1.4706569

Google Scholar

[16] R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, S.M. George. Ultra-low thermal conductivity in W/Al2O3 nanolaminates, Science, 303 (2004) 989-990.

DOI: 10.1126/science.1093711

Google Scholar

[17] C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Ultralow thermal conductivity in disordered, layered WSe2 crystals, Science, 315 (2007) 351-353.

DOI: 10.1126/science.1136494

Google Scholar

[18] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297 (2002) 2229-2232.

DOI: 10.1126/science.1072886

Google Scholar

[19] N. Satoh, Soft matter assembly for atomically precise fabrication of solid oxide, in: X. Chen, H. Fuchs (Eds. ), Soft Matter Nanotechnology, Wiley-VCH, Weinheim, 2015, pp.217-232.

DOI: 10.1002/9783527682157.ch08

Google Scholar

[20] M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82 (1999) 197-200.

DOI: 10.1103/physrevlett.82.197

Google Scholar

[21] N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates, Nat. Nanotechnol. 3 (2008) 106-111.

DOI: 10.1038/nnano.2008.2

Google Scholar

[22] N. Satoh, T. Nakashima, K. Yamamoto, Metastability of anatase: Size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania, Sci. Rep. 3 (2013) (1959).

DOI: 10.1038/srep01959

Google Scholar

[23] S.M. George, Atomic layer deposition: an overview, Chem. Rev. 110 (2010) 111-131.

Google Scholar

[24] T.J. Abraham, D.R. MacFarlane, J.M. Pringle, High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy Environ. Sci. 6 (2013) 2639-2645.

DOI: 10.1039/c3ee41608a

Google Scholar

[25] N. Satoh, Insight from molecular-scale electron transfer to small-scale electronics, Chem. Lett. 43 (2014) 629-630.

DOI: 10.1246/cl.131185

Google Scholar

[26] J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein, Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95 (1973) 948-949.

DOI: 10.1021/ja00784a066

Google Scholar

[27] H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, J. Non-Cryst. Solids, 198-200 (1996) 165-169.

DOI: 10.1016/0022-3093(96)80019-6

Google Scholar