Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)

Article Preview

Abstract:

In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

38-42

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.G. Pettifor, A.H. Cottrell . Electron theory in alloy design. Oxford, United Kingdom: Alden Press, (1992).

Google Scholar

[2] A. Franceschetti, A. Zunger, Nature (London) (1999), 402-60.

Google Scholar

[3] G.H. Jόhannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nrskov . Phys Rev Lett 88, (2002) 255506.

Google Scholar

[4] R. Ferro , G. Cacciamani,G. Borzone. Intermetallics 11 (2003) 1081.

Google Scholar

[5] W. Hume-Rothery, G.M. Mabbot, K.M. Channel-Evans. Philos Trans R Soc London Ser. A 1 (1934) 233.

Google Scholar

[6] J.C. Phillips, J. A . Van Vechten. Phys Rev Lett 30 (1973) 220e3.

Google Scholar

[7] J.R. Chelikowsky, J.C. Phillips. Phys Rev Lett 39 (1977) 1687e91.

Google Scholar

[8] L.S. Darken, F.W. Gurry. Proceeding of the symposium theory of alloys phase formation, New Orleans 1979, eds. by L.D. Bennet (American Society for Metals, Metals Park, OH) (1979).

Google Scholar

[9] A.R. Miedema, A.K. Niessen, F.R. de Boer, R. Boom, W.C.M. Matten. Cohesion in metals: transition metal alloys, (1989). North-Holland, Amsterdam.

Google Scholar

[10] R. E. Watson & L. H. Bennett, Phys. Rev. Lett. 15 (1979) 1130-1134.

Google Scholar

[11] R. E. Watson & L. H. Bennett, CALPHAD vol 5, N°1, (1981) 25.

Google Scholar

[12] R. E. Watson & L. H. Bennett, Phys. Rev. B18 (1978) 6439.

Google Scholar

[13] J. Friedel, Advances in Phys, 3 (1954) 445.

Google Scholar

[14] R. E. Watson, J. Hudis & M. L. Perlman, Phys. Rev. B4 (1971) 4139.

Google Scholar

[15] H. Krarcha, A. Belgacem bouzida ; Physics Procedia, Volume 2, Issue 3, November (2009), Pages 927-932.

DOI: 10.1016/j.phpro.2009.11.045

Google Scholar

[16] S.D. Cramer, B.S. Covino, editors. ASM handbook, 10th ed., vol. 13B. Metals Park (OH): ASM International (2005).

Google Scholar

[17] J. Wallenius, D . Westlen. Ann Nucl Energy (2008)35-60.

Google Scholar

[18] R.H. Nielsen. Ullman's encyclopedia of industrial chemistry, vol. A12. Weinheim: VCH Verlagsgesellschaft; (1989) 559–69.

Google Scholar

[19] J.A. Davidson. US Patent 5954724, September 21, (1999).

Google Scholar

[20] X.L. Meng, Y.D. Fu, W. Cai, Q.F. Li, L.C. Zhao. Phil Mag Lett (2009) 89-431.

Google Scholar

[21] M.T. Fernandes. Aluminum–magnesium–scandium alloys with hafnium. WO/2001/012868. World Intellectual Property Organization, (2001).

Google Scholar

[22] A . Baudry, P . Boyer, L. P Ferreira, S.W. Harris, S. Miraglia, L . Pontonnier. J Phys Condens Matter 4 (1992) 5025.

Google Scholar

[23] A . Callegari, P. Jamison, E . Carrier, S . Zafar, E. Gusev, V. Narayanan, Interface engineering for enhanced electron mobilities in W/HfO2 gate stacks. In: Electron devices meeting, IEDM technical digest. IEEE International, December 2004. Piscataway (NJ): IEEE; (2004).

DOI: 10.1109/iedm.2004.1419304

Google Scholar

[24] W. Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133.

Google Scholar

[25] X. Gonze, Phys. Rev. B 55 (1997) 10337.

Google Scholar

[26] X. Gonze, C. Lee, Phys. Rev. B 55 (1997) 10355.

Google Scholar

[27] X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68 (1992) 3603.

Google Scholar

[28] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[29] P. Giannozi, S. de Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 43 (1991) 7231.

Google Scholar

[30] P . Villars, L.D. Calvert. In: Pearson's handbook of crystallographic data for intermetallic phases, vols. 2, 3. Metals Park, Ohio: American Society for Metals; (1985).

DOI: 10.1002/crat.2170221117

Google Scholar

[31] N. Novakovic, N. Ivanovic, V. Koteski, I. Radisavljevic, J. Belos evic-Cavor, B. Cekic, Intermetallics 14 (2006) 1403-1410.

Google Scholar

[32] Weiwei Xing , Xing-Qiu Chen, Dianzhong Li, Yiyi Li, C.L. Fu b, S.V. Meschel c, Xueyong Ding , Intermetallics 28 (2012) 16-24.

Google Scholar

[33] K. Judith, M . Stalick, Journal of Phase Equilibria and Diffusion , 35(1) (2014) 15-23.

Google Scholar

[34] Q. Guo, O.J. Kleppa, J. Alloys Compounds 321 (2001) 169.

Google Scholar

[35] L. Topor, O.J. Kleppa, Metall Trans A, 19 (1988)1827-31.

Google Scholar

[36] J.C. Gachon, N. Selhaoui, B. Aba, J. Hertz. J Phase Equ (1992)13-506.

Google Scholar

[37] F. E. Wang, D. W. Ernst, Journal of Applied Physics, 39(5) (1968) 2192.

Google Scholar

[38] L . Gus,W. Hart, Stefano Curtarolo, Thaddeus B. Massalski and Ohad Levy, PHYS. REV. X 3 (2013) 041035.

Google Scholar

[38] F. R. de Boer, R. Boom, W.C.M. Mattens, A. R. Miedema, A. K. Niesson, Cohesion in metals, North Holland, (1988).

Google Scholar

[39] S.V. Meschela, X.Q. Chen, O.J. Kleppa, Philip Nash, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 33 (2009) 55-62.

Google Scholar