Investigation of Mechanochemical Synthesized Tungsten Silicides from WO3, SiO2 and Mg Blends

Article Preview

Abstract:

In this study, tungsten silicide powders mechanochemically synthesized using WO3-SiO2-Mg powder blends. Stoichiometric proportions and excess amounts of initial powders were used to indicate the effects of final composition of synthesized tungsten silicide powders. Since the initial powder compositions affect the reaction times, all compositions were mechanically alloyed for 1 hour. In addition, thermodynamic calculations of all compositions were theoretically conducted. The dominant phases are WSi2 and MgO for all mechanically alloyed powders. Results show that the excess amount additions of initial powders directly effects the amount and formation of resultant phases in the synthesized powder compositions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

47-51

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. Murarka, Silicides, in Characterization in Silicon Processing, 1993, p.53–95.

Google Scholar

[2] J. J. Petrovic and A. K. Vasudevan, Key developments in high temperature structural silicides, Mater. Sci. Eng., A, 261 (1999), 1–5.

Google Scholar

[3] Y. L. Jeng and E. J. Lavernia, Processing of molybdenum disilicide, J. Mater. Sci., 29 (1994), 2557–2571.

Google Scholar

[4] C. L. Briant, J. J. Petrovic, B. P. Bewlay, A. K. Vasudevan, and H. A. Lipsitt, High temperature silicides and refractory alloys, in Materials Research Society Symposium Proceedings, 322 (1993).

Google Scholar

[5] M. Ali and M. Liwa, Modification of parameters in mechanochemical synthesis to obtain <alpha>and <beta>molybdenum disilicide, Adv Powder Technol, 24 (2013), 183–189.

DOI: 10.1016/j.apt.2012.05.007

Google Scholar

[6] G. T. Fei, L. Liu, X. Z. Ding, L. D. Zhang, and Q. Q. Zheng, Preparation of nanocrystalline intermetallic compounds WSi2 and MoSi2 by mechanical alloying, J. Alloys Compd., 229 (1995), 280–282.

DOI: 10.1016/0925-8388(95)01697-x

Google Scholar

[7] S. R. B. S. Murty, Novel materials synthesis by mechanical alloying/ milling, Int. Mater, 43 (1998), 101–141.

Google Scholar

[8] P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. M. Criado, F. Delogu, E. Dutková, E. Gaffet, F. J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, and K. Wieczorek-Ciurowa, Hallmarks of mechanochemistry: from nanoparticles to technology., Chem. Soc. Rev., 42 (2013).

DOI: 10.1039/c3cs35468g

Google Scholar

[9] B. K. Yen, Self-propagating exothermic reactions between silicon and transition metals of groups IVA-VIA induced by mechanical alloying, J Appl Phys, 89 (2001), 1477-1483.

DOI: 10.1063/1.1333027

Google Scholar

[10] L. Takacs, Self-sustaining reactions induced by ball milling, Prog. Mater Sci., 47 (2002), 355–414.

DOI: 10.1016/s0079-6425(01)00002-0

Google Scholar

[11] U. Anselmi-Tamburini, F. Maglia, S. Doppiu, M. Monagheddu, G. Cocco, and Z. a. Munir, Ignition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures, J. Mater. Res, 19 (2004), 1558–1566.

DOI: 10.1557/jmr.2004.0209

Google Scholar

[12] C. Koch, Intermetallic matrix composites prepared by mechanical alloying—a review, Mater. Sci. Eng., A, 244 (1998), 39–48.

Google Scholar

[13] B. K. Yen, T. Aizawa, J. Kihara, and N. Sakakibara, Reaction synthesis of refractory disilicides by mechanical alloying and shock reactive synthesis techniques, Mater. Sci. Eng., A, 239–240 (1997), 515–521.

DOI: 10.1016/s0921-5093(97)00625-4

Google Scholar