The Nanoflower-Like Morphology and Magnetism of As-Milled Ho(Ni0.8Co0.2)3 Powders Prepared by HEBM

Article Preview

Abstract:

The morphology and magnetic properties of the Ho(Ni0.8Co0.2)­3 crystalline and ball – milled intermetallic compounds are presented. The polycrystalline bulk compound crystallizes in the rhombohedral PuNi3 - type of crystal structure and indicates ferrimagnetic arrangement with the Curie temperature of TC = 48 ± 1 K, the helimagnetic temperature Th = 26 ± 2 K with the total saturation magnetic moment of 7.78 µB/f.u. at 2 K. The use of the HEBM method leads to the formation of nanoflakes with typical thickness of less than 100 nm. The extended milling leads to the reduction in particles/crystallites size and in the emergence of the relatively small coercivity (HC).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 257)

Pages:

76-80

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Gultfleisch, M. A. Willard, E. Brück, Ch. H. Chen, S. G. Sankar, J. Ping Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient, Adv. Mater. 23 (2011) 821 – 842.

DOI: 10.1002/adma.201002180

Google Scholar

[2] G. le Caër, P. Delocroix, S. Bégin – Colin, T. Ziller, High – energy ball-milling of alloys and compounds, Hyperfine Interactions 141/142 (2002) 63 - 72.

DOI: 10.1023/a:1021245701811

Google Scholar

[3] C. C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, NanoStructured Materials 9 (1997) 13 – 22.

DOI: 10.1016/s0965-9773(97)00014-7

Google Scholar

[4] C. C. Koch, Review: Mechanical milling/alloying of intermetallics, Intermetallics 4 (1996) 339– 355.

DOI: 10.1016/0966-9795(96)00001-5

Google Scholar

[5] S. K. Pal, L. Schultz, O. Gutfleisch, Effect of milling parameters on SmCo5 nanoflakes prepared by surfactant-assisted high energy ball milling, J. Appl. Phys. 113 (2013) 013913 - 6.

DOI: 10.1063/1.4773323

Google Scholar

[6] A. M. Gabay, N. G. Akdogan, M. Marinescu, J. F. Liu, G. C. Hadjipanayis, Rare earth–cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling, J. Phys.: Condens. Matter 22 (2010) 164213 - 6.

DOI: 10.1088/0953-8984/22/16/164213

Google Scholar

[7] H. Feng, H. Chen, Z. Guo, W. Pan, M. Zhu, W. Li, Investigation on microstructure and magnetic properties of Sm2Co17 magnets aged at high temperature, J. Appl. Phys. 109 (2011) 07A763.

DOI: 10.1063/1.3563084

Google Scholar

[8] N. G. Akdogan, G. C. Hadjipanayis, D. J. Sellmyer, Anisotropic Sm-(Co, Fe) nanoparticles by surfactants-assisted ball milling, J. Appl. Phys. 105 (2009) 07A710327.

DOI: 10.1063/1.3067851

Google Scholar

[9] N. Lu, X. Song, J. Zhang, Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound, Nanotechnology 21 (2010) 115708 – 7.

DOI: 10.1088/0957-4484/21/11/115708

Google Scholar

[10] K. Younisi, J - C. Crivello, V. Paul – Boncour, L. Bessais, F. Porcher, G. André, Study of the magnetic and electronic properties of nanocrystalline PrCo3 by neutron powder diffraction and density functional theory, J. Phys.: Condens. Matter 25 (2013).

DOI: 10.1088/0953-8984/25/11/116001

Google Scholar

[11] A. M. Gabay, X. C. Hu, G. C. Hadjipanayis, Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry, J. Magn. Magn. Mater. 368 (2014) 75–81.

DOI: 10.1016/j.jmmm.2014.05.014

Google Scholar

[12] B. Chevalier, J. – L. Bobet, M. Nakhl, J. Etourneau, Influence of the mechanical grinding on the magnetic properties of GdMn2, J. Alloys. Compd. 320 (2001) 33 – 39.

DOI: 10.1016/s0925-8388(01)00928-8

Google Scholar

[13] K. Ociepka, A. Bajorek, A. Chrobak, G. Chełkowska, Magnetic properties of Tb(Ni1-xFex )3: (x= 0. 2, 0. 6) crystalline compound and powders, Acta Physica Polonica A 126 (2014) 180 – 181.

DOI: 10.12693/aphyspola.126.180

Google Scholar

[14] A. Chrobak, A. Bajorek, G. Chełkowska, G. Haneczok, M. Kwiecień, Magnetic properties and magnetocaloric effect of the Gd(Ni1-xFex)3 crystalline compound and powder, Phys. Stat. Sol. (a) 206 (2009) 731 – 737.

DOI: 10.1002/pssa.200824470

Google Scholar

[15] A. Bajorek, P. Skornia, K. Prusik, M. Wojtyniak, G. Chełkowska, Study of morphology and magnetic properties of the HoNi3 crystalline and ball-milled compound, Materials Characterization 101 (2015) 58 -70.

DOI: 10.1016/j.matchar.2015.01.011

Google Scholar

[16] A. Bajorek, K. Prusik, M. Wojtyniak, G. Chełkowska, Synthesis of nanostructured Ho(Ni0. 5 Fe0. 5)3 compound via ball – milling, Materials Characterization 110 (2015) 145 – 159.

DOI: 10.1016/j.matchar.2015.10.026

Google Scholar

[17] A. Bajorek, K. Prusik, M. Wojtyniak, G. Chełkowska, Application of HEBM for obtaining Ho(Ni0. 5Co0. 5)3 nanoflakes, Materials Physics and Chemistry 177 (2016) 299-313.

DOI: 10.1016/j.matchemphys.2016.04.031

Google Scholar

[18] J. M. D. Coey, Amorphous magnetic order, Journal of Applied Physics 49 (1978) 1646-1652.

Google Scholar

[19] R. Asomoza, A. Fert, I. A. Campbell, R. Meyert, Resistivity of DyNi3 and HoNi3 amorphous alloys, J. Phys. F: Metal Phys. 7 (1977) L327 – L332.

DOI: 10.1088/0305-4608/7/12/003

Google Scholar

[20] A. Bajorek, C. Berger, K. Prusik, M. Wojtyniak, G. Chełkowska, Novel Ho(Ni0. 8Co0. 2)3 nanoflakes produced by high energy ball – milling, in review.

DOI: 10.1016/j.matchar.2017.03.035

Google Scholar